
Using AspectJ to Implement Product-Lines: A Case Study

Roberto E. Lopez-Herrejon and Don Batory
Department of Computer Sciences

The University of Texas
Austin, Texas 78712

{rlopez,batory}@cs.utexas.edu

Abstract. Aspect-Oriented Programming (AOP) is an emerging technology
whose goal is to modularize concerns that cross-cut multiple classes. The pur-
pose of this report is to describe how one of the main representatives of AOP,
namely AspectJ, was used to implement a simple yet illustrative product-line of
graph algorithms so that we can focus on the implementation details. We expect
that studies like this can shed light on the applicability of AOP beyond the tradi-
tional examples of logging and debugging.

1 Introduction

A product-line is a family of related software applications. A product-line architecture
is a design for a product-line that identifies the underlying building blocks or compo-
nents of family members, and enables the synthesis of any particular member by com-
posing these components. Different family members (product-line applications) are
represented by different combination of components. The motivation for product-line
architectures is one of economics and practicality: it is too expensive to build all possi-
ble family members; it is much cheaper to build components and to assemble desired
family members from them.

Many methodologies have been invented to create product-line architectures and sev-
eral technologies have been used to implement them (e.g., [2, 4, 10, 12]). In this paper,
we explore how AOP techniques could fit in the product-line context. To do that we
selected AspectJ [1, 7, 8] and applied it to the problem domain of graph algorithms [9],
which is relies on common knowledge yet it is complex enough to highlight the key
points of a product-line design.

2 The Graph Product Line (GPL)

The Graph Product-Line (GPL) is a family of classical graph applications that was
inspired by work on software extensibility [6, 11]. GPL is typical of product-lines in
that applications are distinguished by the set of features that they implement, where no

two applications have the same set.1 Also typical is that applications are modeled as

sentences of a grammar. Figure 1a2 shows this grammar, where tokens are names of

1. A feature is a functionality or implementation characteristic that is important to clients [5].
2. For simplicity, the grammar does not preclude the repetition of algorithms, whereas the GUI

does.
1

features. Figure 1b shows a GUI that implements this grammar and allows GPL prod-
ucts to be specified declaratively as a series of radio-button and check-box selections.

The semantics of GPL features, and the domain itself, are straightforward. A graph is
either Directed or Undirected. Edges can be Weighted with non-negative num-
bers or Unweighted. Every graph application requires at most one search algorithm:
breadth-first search (BFS) or depth-first search (DFS); and one or more of the following
algorithms [3]:

• Vertex Numbering (Number): Assigns a unique number to each vertex as a
result of a graph traversal.

• Connected Components (Connected): Computes the connected components
of an undirected graph, which are equivalence classes under the reachable-from
relation. For every pair of vertices x and y in an equivalence class, there is a path
from x to y.

• Strongly Connected Components (StronglyConnected): Computes the
strongly connected components of a directed graph, which are equivalence classes
under the reachable-from relation. A vertex y is reachable form vertex x if there is
a path from x to y.

• Cycle Checking (Cycle): Determines if there are cycles in a graph. A cycle in
directed graphs must have at least 2 edges, while in undirected graphs it must have
at least 3 edges.

GPL := Gtp Wgt Src Alg+;

Gtp := Directed | Undirected;

Wgt := Weighted | Unweighted;

Src := DFS | BFS | None;

Alg := Number | Connected | StronglyConnected
| Cycle | MST Prim | MST Kruskal | Shortest;

(a)

(b)

Figure 1. GPL Grammar and Specification GUI
2

• Minimum Spanning Tree (MST Prim, MST Kruskal): Computes a Minimum
Spanning Tree (MST), which contains all the vertices in the graph such that the
sum of the weights of the edges in the tree is minimal.

• Single-Source Shortest Path (Shortest): Computes the shortest path from a
source vertex to all other vertices.

A fundamental characteristic of product-lines is that not all features are compatible.
That is, the selection of one feature may disable (or enable) the selection of others.
GPL is no exception. The set of constraints that govern GPL features are summarized
in Table 1.

A GPL application implements a valid combination of features. As examples, one GPL
application implements vertex numbering and connected components using depth-first
search on an undirected graph. Another implements minimum spanning trees on
weighted, undirected graphs. Thus, from a client’s viewpoint, to specify a particular
graph application with the desired set of features is straightforward. And so too is the
implementation of the GUI (Figure 1b) and constraints of Table 1.

3 Graph Representation

While deciding how to represent our graphs, we recognized that there are a standard
set of “conceptual” objects that are referenced by all graph algorithms: Graphs, Verti-
ces, Edges, and Neighbors (i.e., adjacencies). Algorithms in graph textbooks define
fundamental extensions of graphs, and these extensions modify Graph objects, Vertex
objects, Edge objects, and Neighbor objects. Thus, the simplest way to express such

Algorithm
Required
Graph Type

Required
Weight

Required
Search

Vertex Numbering Directed,
Undirected

Weighted,
Unweighted

BFS, DFS

Connected Components Undirected Weighted,
Unweighted

BFS, DFS

Strongly Connected Components Directed Weighted,
Unweighted

DFS

Cycle Checking Directed,

Undirected

Weighted,
Unweighted

DFS

Minimum Spanning Tree Undirected Weighted None

Single-Source Shortest Path Directed Weighted None

Table 1. Feature Constraints
3

extensions is to reify all of these “conceptual” objects as physical objects and give
them their own distinct classes.

Therefore we represent a graph with these four classes:

• Graph: contains a list of Vertex objects, and a list of Edge objects.

• Vertex: contains a list of Neighbor objects.

• Neighbor: contains a reference to a neighbor Vertex object (the vertex in the
other end of the edge), and a reference to the corresponding Edge object.

• Edge: extends the Neighbor class and contains the start Vertex of an Edge.

Edge annotations are performed by adding extra fields to the Edge class. This repre-
sentation is illustrated in Figure 2. For example, Edge E1 connects vertex V1 to V2
with weight of 7.

4 AspectJ Implementation

We implemented GPL with the purpose of exploring how AspectJ can be used to
implement product-lines and to compare and contrast it with other methodologies.

Creating an application in AspectJ entails the implementation of two things:

• Base code: consists of the classes and interfaces of a Java program.
• Aspect code: consists of the aspect files that add crosscutting implementation to

the base code.

The Base code of GPL consists of the 4 classes that are used to represent a graph:
Graph, Vertex, Neighbor, and Edge. These classes have empty bodies to which aspects
add new fields, methods, and constructors.

Figure 2. Edge and Neighbor List Representation Example

Graph Object
Vertices List

V1 V2 V3V1

V2

V3
9

7 11

Graph Example

E2E1 E3

Edges List

E1

V2 V3

E2

Vertex V1
List of Neighbors

Neighbor
Object

V1 V2 V1 V3

Edge E1 Edge E2

7 9 V3

Edge E3

11V2
4

Each feature from Figure 1a was implemented by means of an aspect.3 Recall from
Table 1 that some algorithms require a search method. These search methods are called
BFS and DFS, and work on WorkSpace objects. Each algorithm that uses any of these

search methods declares one class4 that extends WorkSpace to customize the search
for its particular needs. These classes are shown in italics in Table 2. For example, the
vertex numbering algorithm Number, customizes WorkSpace via the NumberWork-
Space class to implement its functionality.

There are three aspects that do not appear in Figure 1a: Transpose, Benchmark, and
Prog. Transpose performs graph transposition and is used (only) by the Strongly-
Connected algorithm. It made sense to separate the StronglyConnected algorithm
from Transpose, as they dealt with separate concerns. (This means that an implemen-
tation constraint in using the StronglyConnected aspect is that the Transpose
aspect must also be included, and vice versa). Benchmark contains functions to read a
graph from a file and elementary timing functions for profiling. Prog contains the
main method. It creates the objects required to represent a graph whose elements are
read from a file, and starts the execution of the algorithms.

3. Note that the production GPL is not a feature rather, it is the application definition. Also note
that Unweighted and None are identity features, that is, they do not add anything to the base
code and therefore they do not appear on Table 2.

4. Note that StronglyCC declares two classes since it calls DFS twice with different purpose.

Directed directed graph Cycle
CycleWorkSpace

cycle checking

Undirected undirected
graph

MSTPrim MST Prim
algorithm

Weighted weighted graph MSTKruskal MST Kruskal
algorithm

DFS
WorkSpace

depth-first
search

Shortest single source
shortest path

BFS
WorkSpace

breadth-first
search

Transpose graph
transposition

Number
NumberWorkSpace

vertex
numbering

Benchmark benchmark
program

CC
RegionWorkSpace

connected
components

Prog main program

StronglyCC
FinishTimeWorkSpace
WorkSpaceTranspose

strongly
connected
components

Table 2. AspectJ Aspects and Classes of GPL
5

In particular the run method of the Graph Class is important. Every algorithmic5

aspect such as Number, defines a pointcut to add advice to this method, whose empty

body is introduced to the Graph class in the Directed or Undirected aspects6. In the
advice to the run method the aspects execute the algorithm they implement; effectively

producing a daisy-chain like effect. Figure 3 illustrates this for the Number aspect.7

An algorithmic aspect like Number requires that its auxiliary class be declared to
extend the WorkSpace class as mentioned before. There are two equivalent ways to do
that:

• Use standard Java class extension, that is, declare in the NumberWorkSpace Java
file that it extends WorkSpace.

• Use the declare parents introduction capability as shown in Figure 4.

The customization of WorkSpace is done as follows: the Number aspect introduces to
NumberWorkSpace a vertex counter that is going to keep track of the vertex number,
then the constructor that initializes it, and finally it defines the behavior of the method
preVisitAction which simply increments this counter. Something along these lines is
done for the other algorithmic aspects that use search methods. See Figure 4.

Another interesting issue is how weights are handled. The Prog aspect reads a graph
from a file. For each edge read, it calls method addAnEdge of class Graph to add it to
the class’ Edges list. If there are no weights in the graph, the method addAnEdge in
Undirected or Directed aspects takes care of the creation of the new weightless edges.

5. Algorithmic aspects are: Number, CC, StronglyCC, Cycle, MSTPrim, MSTKruskal, Shortest.
6. Directed and Undirected aspects contain the basic functionality of a GPL application.
7. Here we used an after advice, but we could have used before or around advice as well.

// A point cut to calls to Graph run
pointcut graph_run(Graph g, Vertex v): target(g) && args(v) &&
 call(void Graph.run(Vertex));

// An after advice to run Vertex Numbering
after(Graph g, Vertex v): graph_run(g,v) {

System.out.println("Running Vertex Numbering ");
g.NumberVertices();

}

// Effectively runs the vertex numbering algorithm
public void Graph.NumberVertices() {
 NumberWorkSpace nw = new NumberWorkSpace();
 GraphSearch(nw);
}

Figure 3. Pointcut for run method in Number aspect
6

However, if there are weights involved, the Weighted aspect must intercept those calls,
that is, the addAnEdge default method in either Undirected or Directed aspects must
not be called, instead Edge objects with weights must be created. The way to do that is
illustrated in Figure 5. There, a pointcut is defined to capture all the calls to the method
addAnEdge. The around advice is key because it allows us to effectively override the
addAnEdge method defined in Undirected and Directed aspects.

5 Findings

In product-line designs it is the case that not all syntactically valid composition of fea-
tures are semantically valid. The legal compositions of features in Table 1 are defined
by simple constraints called design rules [2]. In AspectJ there is no support for design
rules, that is, the programmer has to manually select all the files necessary to create a
new member, this activity is complex and error prone even for small product-lines.

// **** NumberWorkspace class extends the WorkSpace class
declare parents: NumberWorkSpace extends WorkSpace;

int NumberWorkSpace.vertexCounter;

public NumberWorkSpace.new() {
vertexCounter = 0;

 }

public void NumberWorkSpace.preVisitAction(Vertex v) {
 // This assigns the values on the way in
 if (v.visited!=true) v.VertexNumber = vertexCounter++;
 }

Figure 4. Extending WorkSpace in Number aspect

// Adds an edge with weights
// Gets the jps of the targets that call addAnEdge in Graph
pointcut graph_addAnEdge(Graph g, Vertex start, Vertex end,

int weigth):
target(g) && args(start,end,weigth) &&
call(void Graph.addAnEdge(Vertex, Vertex, int));

// An around advice to add the weigth of the edge
void around(Graph g, Vertex start, Vertex end, int weigth):

graph_addAnEdge(g, start, end, weigth) {
Edge e = new Edge(start, end, weigth);
g.addEdge(e);

}

Figure 5. Adding weighted edges in Weighted aspect
7

Aspects can only introduce classes that are private to the aspects and that can only be
used in the advices defined in them. This causes that any new classes required by an
aspect have to be added manually to the list of files that have to be passed to the
weaver which again is error prone and tedious.

6 Appendix

An application that works on a weighted, directed graph that implements vertex num-
bering, cycle checking, strongly connected components, and shortest path algorithm
requires the following files to be passed to the AspectJ compiler:

Vertex, Graph, Edge, Neighbor, Directed, Weighted, DFS,
WorkSpace, NumberWorkSpace, Number, CycleWorkSpace, Cycle,
Transpose, FinishTimeWorkSpace, WorkSpaceTranspose,
StronglyCC, Shortest, Benchmark, Prog

As can be seen from this example, even for the very simple product lines, the number
of files to be considered is large.

6.1 Running examples

The zip file associated with this report contains all the source code of GPL, and a cou-
ple of files Example1.lst and Example2.lst that contain valid examples of GPL applica-
tions. To compile them, follow the standard procedure:

ajc -argfile Example1.lst

This for example creates the application described in the previous section. The gener-
ated class files are put in the GPL directory, the package all aspects and classes belong
to. The zip file also contains some benchmark files that can be used to run the GPL
applications. Prog receives two arguments: the benchmark file, and the starting vertex.
For example:

java GPL.Prog ./BENCH/MSTExample.bench v0

This runs the family member using MSTExample benchmark file, and starts the execu-
tion of the algorithms that require a starting point from vertex v0. As result of the exe-
cution, the final values of the different fields that the algorithms used are displayed
along the execution time that takes to run the application.

7 References

[1] AspectJ. Programming Guide. http://aspectj.org/doc/proguide

[2] D. Batory and B. Geraci. Composition Validation and Subjectivity in GenVoca
Generators. IEEE Transactions on Software Engineering, February 1997.

[3] T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to Algorithms, MIT Press,
1990.
8

[4] K. Czarnecki and U.W. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[5] M. Griss, “Implementing Product-Line Features by Composing Component Aspects”,
First International Software Product-Line Conference, Denver, Colorado., August 2000.

[6] I. Holland. “Specifying Reusable Components Using Contracts”, ECOOP 1992.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin,
“Aspect-Oriented Programming”, ECOOP 97, 220-242.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm, W.G. Griswold. “An overview
of AspectJ”. In Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP). Springer, 2001.

[9] R. E. Lopez-Herrejon, D. Batory. “A Standard Problem for Evaluating Product-Line
Methodologies”. Third International Conference on Generative and Component-Based
Software Engineering (GCSE), September 2001, Erfurt, Germany.

[10] D.L. Parnas, “On the Design and Development of Program Families”, IEEE Transactions
on Software Engineering, March 1976.

[11] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”,
JSSST International Symposium on Object Technologies for Advanced Software,
Springer-Verlag, 1996, 22-37.

[12] D.M. Weiss and C.T.R. Lai, Software Product-Line Engineering, Addison-Wesley, 1999.
9

	Using AspectJ to Implement Product-Lines: A Case Study
	Roberto E. Lopez-Herrejon and Don Batory
	Department of Computer Sciences
	The University of Texas
	Austin, Texas 78712 {rlopez,batory}@cs.utexas.edu
	Abstract. Aspect-Oriented Programming (AOP) is an emerging technology whose goal is to modularize...
	1 Introduction
	2 The Graph Product Line (GPL)
	Figure 1. GPL Grammar and Specification GUI
	Table 1. Feature Constraints

	3 Graph Representation
	Figure 2. Edge and Neighbor List Representation Example

	4 AspectJ Implementation
	Table 2. AspectJ Aspects and Classes of GPL
	Figure 3. Pointcut for run method in Number aspect
	Figure 4. Extending WorkSpace in Number aspect
	Figure 5. Adding weighted edges in Weighted aspect

	5 Findings
	6 Appendix
	6.1 Running examples

	7 References
	[1] AspectJ. Programming Guide. http://aspectj.org/doc/proguide
	[2] D. Batory and B. Geraci. Composition Validation and Subjectivity in GenVoca Generators. IEEE ...
	[3] T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to Algorithms, MIT Press, 1990.
	[4] K. Czarnecki and U.W. Eisenecker, Generative Programming: Methods, Tools, and Applications, A...
	[5] M. Griss, “Implementing Product-Line Features by Composing Component Aspects”, First Internat...
	[6] I. Holland. “Specifying Reusable Components Using Contracts”, ECOOP 1992.
	[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin, “Aspec...
	[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm, W.G. Griswold. “An overview of Asp...
	[9] R. E. Lopez-Herrejon, D. Batory. “A Standard Problem for Evaluating Product-Line Methodologie...
	[10] D.L. Parnas, “On the Design and Development of Program Families”, IEEE Transactions on Softw...
	[11] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”, JSSST Inte...
	[12] D.M. Weiss and C.T.R. Lai, Software Product-Line Engineering, Addison-Wesley, 1999.

