
On the Effects of Loose Causal Consistency in Mobile
Multiplayer Games
Angie Chandler, Joe Finney

Computing Department
Infolab 21, South Drive

Lancaster University, UK
Tel: +44 1524 510325

{angie, joe}@comp.lancs.ac.uk

ABSTRACT

It is well understood that distributed multiplayer
games, as soft real-time systems, require a degree of
support from the underlying network in order to
function correctly, in terms of predictable end to end
bandwidth, latency and jitter. In a mobile
environment, such applications face even greater
challenges, as the latency of wireless networks is
much higher than their wireline counterparts, jitter is
often much higher due to network handoff and
bandwidth is at a premium. In fact, the latency of
many wide area wireless networks is beyond the
tolerance of most multiplayer games, rendering such
applications unusable.

This paper presents the design and experimental
evaluation of Rendezvous, a novel decentralized
consistency management mechanism that enables the
collaboration of multiple players in mobile real-time
games, even in a high latency environment. The
operation of the mechanism is validated through the
analysis of a real world example - a distributed mobile
multiplayer soccer game called Knockabout, which is
designed to operate on the Smartphone platform.
Experimental results are included not only comparing
Rendezvous to an existing consistency mechanism,
but also measuring the length of network delay
tolerated by the platform and its effect on the players.

Keywords
mobile, wireless, real-time, consistency management,
gaming, multiplayer, collaborative, latency, peer to peer,
relevance filtering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NetGames’05, October 10–11, 2005, Hawthorne, New York, USA.
Copyright 2005 ACM 1-59593-157-0/05/0010...$5.00.

1. INTRODUCTION

In recent years, mobile networked gaming platforms
have expanded from relative obscurity to becoming
truly ubiquitous, with emerging devices such as the
Sony PSP and Nintendo DS complimenting the
existing Nokia N-Gage and Smart phone platforms.
These devices now integrate wireless network
technologies including Bluetooth, 802.11, GSM and
GPRS into high performance multimedia terminals to
enable distributed multiplayer gaming between
handsets. These devices pave the way to the next
logical step in mobile gaming – distributed real-time
multiplayer mobile games. However, we are unlikely
to see any significant deployment of such games in
the near future despite the advanced specifications of
these emerging devices. This is largely due to the QoS
characteristics of the underlying network
technologies, in particular the high latency and low
bandwidth associated with the wide area wireless
networks needed to make these devices truly
ubiquitous.

The usability of real-time multiplayer games is
primarily bounded by the latency of the underlying
network - devices need to wait for consensus to be
reached between themselves on game decisions (i.e. a
consistent view of the game to be determined) before
they can be visualized on any device (i.e state is
committed). The period of time this takes is obviously
dominated by the end to end network latency.
Moreover, the well documented human tolerance of
delay in interactive systems is approximately 200ms
[1]. As the latency of many wide area wireless
networks is already beyond this limit, it can render
existing consistency mechanisms inapplicable to the
mobile gaming domain.

This paper proposes the design and evaluation of a
novel peer-to-peer consistency mechanism, called
Rendezvous, which enables the collaboration of

1

multiple players in mobile, real-time games in a high
latency environment, and provides detailed
experimental comparisons between this work and an
existing consistency mechanism, going beyond work
discussed in our short paper [2]. Unlike existing
consistency mechanisms that provide a high degree of
consistency in low latency environments, Rendezvous
provides the means to tolerate a degree of managed
inconsistency between game players’ views of the
game in the short term, thus enabling real-time
behaviour. In the longer term, Rendezvous aims to
ensure high level consistency between views is
reached without penalizing players in terms of
fairness or overall game playability. The paper goes
on to provide detailed design and experimental
evaluation of the Rendezvous mechanism based on
prototype laboratory implementation and its
application to a distributed soccer game called
Knockabout. Results presented include a quantitative
analysis of the length of network latency tolerated by
the Knockabout game whilst using Rendezvous, and
comparisons to the existing consistency mechanism
Rollback. Further analysis also considers the
relationship between consistency and playability at
high latency.

2. THE NEED FOR A NEW CONSISTENCY MODEL

It is readily apparent that in any conceivable
circumstance it is necessary to maintain a consistent
shared view of the game state between players in
order to play a real-time multiplayer game. This
requirement applies as much to multiplayer games
played on a single shared console as it does to
distributed games, wired or wireless. However, we
believe the inherently low bandwidth and high latency
of today’s wide area wireless networks requires a
different approach to be taken to maintaining
consistency of this shared state.

The most widely used, and highly successful, class of
consistency mechanism for distributed real-time
multiplayer games is rollback [3][4], the earliest
example of which being Timewarp [5][6]. Rollback
mechanisms rely on a local lag between the player
performing an action within the game and the game
actually displaying the consequences of that action.
During this local lag, state can be exchanged between
the different instances of the game, and a consistent
view (or at least compatible views which maintain
causal ordering) can be reached. Should any
inconsistencies between views be detected, history

can be ‘rolled back’, and rewritten unbeknownst to
the user, provided that the events leading to the
inconsistency occurred within the period of time
covered by the local lag. By this means, even events
which initially arrive late or out of sequence can be
executed in the correct order with no detriment to the
player. However, this mechanism relies exclusively
on the arrival of network events within the local lag
window, which is necessarily bounded by the human
tolerance for delay. Once the network delay is beyond
this critical value, rollback techniques can no longer
be applied. If they are applied, either the local lag is
beyond the human tolerance, in which case the real-
time nature of the game is removed, or rollback
occurs after events have been visualized by the game
(in which case the rules of cause and effect are
broken, and the player observes arbitrary and visual
discontinuities in the game).

A number of studies have been taken of the maximum
tolerable latency in gaming for the user, with figures
ranging from 120ms to 250ms [1][7], and exact
figures depending on the type of game. These figures
are critical, because they highlight that existing
consistency mechanisms as they stand are
inappropriate to the task of maintaining consistency in
high latency environments, simply by the nature of
their construction. Trials show that the end to end
latency of today’s wide area wireless networks are far
beyond these levels of delay, with the expected round
trip time of GPRS networks in the region of 1000-
2700ms [8], and whilst its 3G replacements perform
better, latencies are still of the order of 400-500ms
[9]. This implies that today, and for some time to
come, existing techniques for consistency
management of multiplayer games cannot be
effectively applied to the real-time mobile gaming
domain.

3. RENDEZVOUS

Rendezvous is a novel, highly optimistic consistency
mechanism targeted at the resolution of the current
stalemate between the need for consistency and real-
time behaviour in high latency collaborative systems,
including mobile multiplayer games. The novelty of
Rendezvous lies in its ability to tolerate a degree of
managed inconsistency between views of shared state
within a game, rather than attempting to maintain
complete and absolute consistency at all times. This
tolerance for inconsistency enables Rendezvous to
allow each node within the game to visualise actions

2

as they happen, irrespective of the lag between that
device and the rest of the network, with consistency
maintained through a shared state convergence
mechanism. In other words, Rendezvous permits short
term inconsistencies to arise between views to enable
real-time behaviour, but controls the flow of the game
to enable long term consistency.

3.1 Overview of Consistency Management in
Rendezvous
Rendezvous is a support platform which acts in a peer
to peer fashion. Each node engaging in a game session
executes an instance of the game application, and
each of those game instances operates in complete
asynchrony with the others. Any user input is handled
within the local instance of the game. e.g. the decision
to move a local player and its visualization operates
immediately and in real-time without any external
input. The degree of consistency between game
instances is maintained through an entity known as
the Rendezvous arbitrator which is integrated into the
game application at compile time. It is the arbitrator
that is responsible for converging the views between
the local game state and that of remote instances of
the game. This is achieved via the application
frequently and periodically (typically every frame)
passing a serialized version of its game state to the
arbitrator in the form of name/value pairs (i.e.
“positionX, 345”), with one arbitrator operating
independently at each peer and periodically
exchanging target states with other arbitrators, as
illustrated below.

Game
Application

Adaptation
rule invocations

Local state update

Rule Engine Target Generation State Distribution

Target states from
remote arbitrators

Target state to
remote arbitrators

Figure 1 - The Rendezvous Arbitrator

A target state is an optimal point at which all the
current (probably differing) states held by the various
game instances could once more become consistent.
Each arbitrator generates a target state based upon its
local game state and the last known target state

received from each of the other arbitrators in the
session (see Figure 1), and in turn distributes this state
to the other arbitrators. It is worth noting that
arbitrators never redistribute the local game state –
only target states. In essence, arbitrators conspire to
generate a consistent shared view not of the current
state, but of some future state which is compatible
with all of the views.

Once a target state has been generated, each node
calculates a means to step towards that target state
through use of a series of application defined
adaptation rules, which allow Rendezvous to control
non-player entities in the game, and even to subtly
bend the rules of the game universe, thus providing
each player with a subtly different, but causally
connected, view of the game. One can consider
existing rollback mechanisms as optimized
derivatives of lock step synchronization schemes, or
transactions. The Rendezvous mechanism lends its
roots more to control theory – it views the differing
states as a complex system to be balanced according
to the set of adaptation rules.

3.2 Generating the Target State
Theoretically, a target state should be calculated based
on its reachability from every current state within the
game using the available adaptation rules. However,
this calculation, in particular when applied to
increasing numbers of players, is known to be of high
complexity. Furthermore, it is likely that during the
execution of a game, the target calculation will be
performed a number of times, thus adding an ever
larger processing burden on a potentially low power
processor, such as those found in mobile devices.
Ordinarily, this reachability calculation would remain
unavoidable, as it would be necessary to guarantee
that all nodes were able to converge on the target
state, but the very nature of the Rendezvous concept
implies that no target state will ever be reached. This
is because of the inevitability of the discovery of a
further inconsistency prior to final convergence on the
target state; the nodes will tend towards the target
state, but they are unlikely to ever reach it before a
further inconsistency is exposed and a new target is
calculated, incorporating the old one.

For the purposes of target calculation, the knowledge
that nodes are unlikely to reach the final target state
provides an opportunity to simplify the calculations
necessary to produce that state into a process of
arithmetically combining the individual state values

3

(such as player location, etc), without the need to
consider application semantics at this stage. This
process often takes the form mean or median
averaging of values, but is also configurable by the
application to allow for the handling of less tolerant
state (e.g. the game score).

Figure 2 - Calculation of the Target State

Each new target state is calculated from the
amalgamation of all previous target states received
from all collaborating nodes in the game, calculated
as described. This amalgamation is then further
combined with the node’s current game state, with a
given weighting, to generate the target. Once
established, the target state is then distributed to all
other nodes, where it will be used as an element of
each other node’s amalgamation during the next
round of target state generation. Thus, for instance,
the most recent target state generated by player 1 will
be sent to each of players 2, 3 and 4 (and also stored
locally). This target state will then be used by each of
the four players, including player 1, to determine a
subsequent target state, with the process continually
updating and incorporating new information from
each of the players gradually. These changes are also
gradually put into effect within the game through the
use of the adaptation rules.

3.3 Adaptation Rules
With the generic functionality of the Rendezvous
mechanism handled within the arbitrator, the
adaptation rules provide necessary application
specific methods, without which the target states
generated by the arbitrator would be meaningless. The
function of the adaptation rules is to provide a low

level understanding of the game, with high level
decisions remaining strictly in the domain of the
player, via the arbitrator.

Adaptation rules are specified by the game application
and implemented by the games programmer according
to a defined API. They consist of a precondition
range, specifying a set of conditions under which the
rule can be fired, a postcondition range, specifying
the potential outcomes of the rule, and an
implementation. These rules are used to model the
functionality of a game, and expose the
implementation of that functionality to the arbitrator.
From here, the arbitrator can choose to invoke the
implementation of one or more rules to ‘encourage’
the local state to converge with the current target
state. It is important to note that the arbitrator can
only manipulate the game in ways defined (i.e.
condoned) by the application programmer, therefore
guaranteeing that no sudden changes or
discontinuities will occur in any given view.

Which adaptation rules fire is, naturally, determined
by the arbitrator from the current state of the game
when compared to the target state. This calculation, as
previously discussed with respect to generation of a
target state, is also theoretically a complex
reachability or AI problem, with each rule to be fired
needing to prove that the ultimate goal of the target
state will remain reachable once its firing has
occurred, in order to ensure that local minima in the
reachability tree are avoided. However, with the
continual update of the target state itself, the
difficulties presented by local minima diminish, with
any problems occurring likely to rapidly disappear
independently of the process of stepping through
rules. As a result, more complex calculations are
justifiably ignored in favour of the more lightweight
and practical firing of the most appropriate rule or
rules at each given update.

The choice of rules to be fired is determined not only
through matching of projected changes in state with
relevant pre and post-conditions, but also through a
hierarchy of consistency requirements. For example,
in the simple soccer game presented here (see section
4.1), the consistency of the overall score has a
significantly higher priority than the accurate
positioning of a single player. This priority system
can lead to temporarily increased inconsistencies in
low priority components of the game, but enables the
maintenance of key elements critical to the

4

consistency of the game as a whole. As with all
elements of the adaptation rules, the priorities are
specified by the application programmer, but are
catered for through the implementation of the
arbitrator.

4. IMPLEMENTATION

Evaluation of the Rendezvous mechanism is non
trivial, as the effectiveness of the mechanism cannot
easily be quantified. Moreover, a simulation of the
mechanism would fail to reflect the key aspects of the
system. For instance, player actions in a game cannot
be easily modelled using existing schemes such as
random walk, as they are driven by events in the
game, and the impact of how the game players
respond to the managed inconsistency could not be
accurately evaluated through simulation alone.

In order to evaluate the Rendezvous concepts, we
opted to develop a prototype of the mechanism and
evaluate it with a real world mobile multiplayer game.
The arbitrator was implemented in the Microsoft
.NET framework using the C# language, for easy
testing development in the PC environments whilst
enabling portability to the Smartphone platform to
allow us to perform user studies. The prototype
implementation currently consists of approximately
7400 lines of code, and has a static memory footprint
of around 60 Kbytes. Furthermore, Rendezvous can
only be truly analyzed through its effectiveness to an
application. In this respect, we have developed a
multiplayer game, also designed for the Smartphone
platform, called Knockabout. Through this
application, we measure the performance of
Rendezvous, and analyze its effectiveness.

4.1 Knockabout

Knockabout is a mobile multiplayer soccer game,
designed to operate with up to 20 players split into
two teams, each interacting with the game via their
own gaming handset. Each player in the game
controls an individual and unique soccer player in
Knockabout. The game provides a simple top down
view of the playing area (as shown in Figure 3), and
allows players to move around the game area (pitch)
and to dribble and kick the ball, with the aim of their
team scoring more goals than the opposing team. The
game is targeted at the SmartPhone and so the screen
size is limited to 176x220 pixels, but with scrolling
the overall pitch size is 616x1000. The game was

developed in C++ using the Gapidraw graphics
libraries.

Knockabout runs asynchronously to the arbitrator,
taking input from the user via the keypad and
updating the local player instantly. Once per frame
(30 times per second), the game state is serialized and
delivered to the arbitrator. This state includes the
position and trajectory of all players, the ball, and the
game score.

Figure 3 – The Knockabout Mobile Multiplayer Game

The game exports adaptation rules and methods to the
arbitrator which are in keeping with the rules of the
game. This permits the arbitrator to manipulate the
actions of any characters in the game other than the
one controlled by the local human player in a manner
consistent with the gameplay. Adaptation rules were
implemented to allow such characters to run around
the pitch (with no preconditions) and dribble and kick
the ball (with the precondition that the character is
close to the ball). A further adaptation rule was added
to enable a character to shoot at the goal, with the
capacity to override all other targets (such as
positioning of characters or the ball), whenever a goal
deficit is detected. This overriding goal shooting
method exhibits a higher priority than any other
adaptation rule, as suggested in the previous section,
with any positioning of either the ball or players
according to targets becoming secondary until the
score is once more consistent. In turn, the positioning
of the ball takes higher priority than the positioning of
players, with one or more of the players potentially
moving further from their target positions in order to
kick the ball and return it to its own target position.
Together, these prioritized adaptation rules and
methods allow the arbitrator to control the local view
of the game, with the aim of converging it to the
current target state.

5

Finally, for the purposes of evaluation, Knockabout
was modified to incorporate a traditional Rollback
based consistency mechanism, including the
instigation of a local lag, in order to provide a direct
comparison to Rendezvous. For the purposes of
offline evaluation, the facility to log all data
distributed between game players was also provided,
with NTP synchronized time stamping. Furthermore,
with the evaluation performed between desktops over
Ethernet, a controlled delay queue was added to the
send method of the arbitrator (and the equivalent
Rollback method), allowing us to emulate any end to
end delay we wish between game clients.

5. EVALUATION

Evaluation of Rendezvous was undertaken over a
series of latencies, each providing detailed and
objective comparisons between the Rendezvous
consistency mechanism and two alternative solutions:
Rollback, a well-known consistency mechanism, and
a control implementation with no consistency
mechanism. Results were logged for a group of 4
distributed, players, with each player testing the game
under the operation of each of the three consistency
mechanisms at a given latency. Each game ran for
approximately 5 minutes, with the results shown in
Figures 4-9 reflecting typical samples from the data
collected. Subsequent results reflect the entire
available data set.

Latencies were chosen to reflect the target of
consistency management in high latency
environments, specifically latencies corresponding to
3G and GPRS latencies, as shown in Table 1.
Rollback operated under a local lag of 120ms, the
accepted limit of human tolerance for lag in real-time
applications [1].

Table 1 Evaluation Latencies

Latency
(ms)

Target

0 Baseline test

100 Common wired network delay. Just
below Rollback local lag threshold.

150 Just above typical local lag threshold.

500 Typical 3G latency.

1000 Typical GPRS latency.

Additional latencies of 250ms and 750ms were also
tested to provide a greater understanding of the
exhibited trends in consistency at higher latency.

5.1 Consistency

In order to provide a quantified measurement of
consistency in the game, a measurement of deviation
between game views was necessary. In the case of
Knockabout, this deviation referred to deviation
between corresponding players and the ball as they
moved around the pitch.

Consistency between players was measured as the
deviation of the reference player’s view of an object
within the game with respect to the player’s actual
position. Ball consistency is taken as the average
deviation of the ball shown by all players. In each of
the following graphs, the ball is represented by the
darkest line, with the 4 players shown in lighter
colours.

Deviation from reference player's results
(Rendezvous)

0

100

200

300

400

500

0 5 10 15 20 25 30 35

Time (s)

D
ev

ia
ti

o
n

 (
p

ix
el

s) player 1 from ref player

player 2 from ref player

player 3 from ref player

player 4 from ref player

ball

Figure 4 Consistency at 500ms in Rendezvous

Figure 4 shows the deviation between each view of a
Knockabout session using Rendezvous as its
consistency mechanism. Both players and the ball are
illustrated as seen by one of the participating,
distributed users at 500ms. Firstly, it can clearly be
seen that the priority of the ball positioning over the
players has been successful, with the ball shown to
have a lower deviation than the players throughout the
game. It can also be observed that the majority of
larger deviations in player positions correlate directly
with a deviation in the ball’s position. This can be
explained by the increased priority of the ball’s
position over opposing players’ positions within the
Rendezvous consistency mechanism. In Rendezvous,
in order to maintain consistency of the ball’s position,
rules are put in place to ensure that should the ball
deviate from its consistent target position, one of the
remotely controlled players will move to intercept and
return it to its intended position. As a result, any
discrepancy in the position of the ball will have a

6

subsequent effect on the extent of one or more of the
players’ deviation. Finally, and critically, the close
similarities between deviations of all players in
Rendezvous (relative to the reference player), shown
by the near precise contours of the lines representing
the players in Figure 4. This interpretation, confirmed
by player’s experiences of the game, demonstrates the
degree of semantic understanding of the game
maintained through Rendezvous even at high latency.

Deviation from reference player's results (Rollback)

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45

Time (s)

D
ev

ia
ti

o
n

 (
p

ix
el

s) player 1 from ref player

player 2 from ref player

player 3 from ref player

player 4 from ref player

ball

Figure 5 Consistency at 500ms in Rollback

Deviation from reference player's results (Control)

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45

Time (s)

D
ev

ia
ti

o
n

 (
p

ix
el

s) player 1 from ref player

player 2 from ref player

player 3 from ref player

player 4 from ref player

ball

Figure 6 Consistency at 500ms in Control

Deviation from reference player's results
(Rendezvous)

0

100

200

300

400

500

0 5 10 15 20 25 30 35

Time (s)

D
ev

ia
ti

o
n

 (
p

ix
el

s) player 1 from ref player

player 2 from ref player

player 3 from ref player

player 4 from ref player

ball

Figure 7 Consistency at low latency in Rendezvous

Deviation from reference player's results (Rollback)

0

100

200

300

400

500

0 5 10 15 20

Time (s)

D
ev

ia
ti

o
n

 (
p

ix
el

s) player 1 from ref player

player 2 from ref player

player 3 from ref player

player 4 from ref player

ball

Figure 8 Consistency at low latency in Rollback

Deviation from reference player's results (Control)

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45

Time (s)
D

ev
ia

ti
o

n
 (

p
ix

el
s) player 1 from ref player

player 2 from ref player

player 3 from ref player

player 4 from ref player

ball

Figure 9 Consistency at low latency in Control

Taken from the games for the equivalent Rollback and
control mechanisms, Figures 5 and 6 show the
deviation of players and the ball at 500ms for
comparison.

These three graphs (Figures 4,5,6) clearly demonstrate
the difference in approach between the three
mechanisms. Whereas in Rendezvous the tracking and
recovery of the ball can be seen as a continuous
process, Figure 6 shows the effects of objects
normalising when no consistency mechanism is
available, with the spikes in the graph representing
large deviations in consistency followed by instant
repositioning. Furthermore, although Figure 5 shows
significantly less instances of objects instantly
normalising, having surpassed the local lag threshold
within Rollback, there are also instances where a
rollback results in instantaneous repositioning of an
object, in particular the ball, as demonstrated by the
sharp vertical drops in the graph corresponding to
rapid reductions in deviation from consistency.

Figures 5 and 6 also demonstrate that both the control
and Rollback deliver increased consistency of players’
positions over the position of the ball, with
Rendezvous proving far more accurate with ball
positioning at the cost of the players.

7

The difference between the three mechanisms can be
further demonstrated by observing the equivalent
graphs (Figures 7, 8 and 9) at low latency, enabling
effective use of local lag in Rollback. Here, the
changes in Rendezvous’ performance (Figures 4 and
7) are minimal when compared to values at 500ms,
with the frequency and scale of deviations remaining
relatively constant. Consistency in the control
(Figures 6 and 9) also retains the same frequency of
recovery, with changes that can be attributed purely to
scale as the normalising process discussed previously
results in smaller but still significant sharp drops in
deviation. Rollback, however, (Figures 5 and 8)
demonstrates entirely changed features, with little
more than deviation noise displayed.

To calculate an overall result from the initial
deviations shown, each of the four players were then
used as a reference player in turn, as seen in Figures
4-9, to calculate deviations of each player and the ball
from every available viewpoint. These results were
then taken and the mean of the deviations given
calculated. The overall results given by these
calculations are shown in Figure 10, below.

Overall Consistency with Increasing Latency

0

50

100

150

200

0 200 400 600 800 1000 1200

Latency (ms)

D
ev

ia
ti

o
n

 (
p

ix
el

s)

Control

Rendezvous

Rollback

Figure 10 Overall Consistency Measurements

As can clearly be seen in Figure 10, with no delay,
Rollback provides the optimal consistency, whilst at
higher latencies, Rendezvous gives a far lower
deviations. It is, perhaps, unexpected however that the
control, with no consistency mechanism should
provide the most reliable consistency, according to
this analysis.

5.2 Playability

The revelation that the absence of a consistency
mechanism can apparently provide better consistency
than either of the opposing methods, brings into
question the function of a consistency mechanism in
real-time games. Naturally, a consistency mechanism
is intended to provide consistency between players,
but it must simultaneously enable each player to

maintain a view which is consistent enough within
itself to make the game continue to be playable.
Results shown in Figures 6 and 9 already suggest that
the instantaneous normalisation feature of the control
will attribute to an increasingly unplayable game.

Subsequently, continuity within a player’s own game
was also calculated, taking the difference in position
of each object within the game between frames
(30ms) and using the probability of large, sudden
movements as a measure of playability. Whilst cross-
player consistency can be measured purely in terms of
deviation, this measure of playability must necessarily
allow for a degree of deviation between frames as the
game progresses. As a result, the change in position of
objects within the game, from 0 to a maximum of
1000 pixels (the size of the pitch) were calculated, and
the probabilities of large changes (>150 pixels)
occurring were then calculated, with Figure 11
showing the probability of large position changes for
each game across each of the chosen latencies.

Playability: Probability of large changes in position
between frames

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0 200 400 600 800 1000 1200

Latency (ms)

P
ro

b
ab

il
it

y

Control

Rendezvous

Rollback

Figure 11 Playability

Here, the benefits of a working consistency
mechanism become apparent. Whilst both
Rendezvous and Rollback maintain playability despite
increasing latencies, the control, no consistency, game
rapidly becomes unplayable.

It is noticeable, however, that there is a sharp drop in
the probability of large discontinuities for the control,
no consistency mechanism, at 1000ms latency (Figure
11). Further investigation can reveal that at 1000ms
latency the control was experiencing difficulties in
maintaining consistency of players’ positions, unlike
at lower latency where only the ball posed any
problems. This in turn gave rise to increasing, but
relatively small (between 100 and 150 pixels),
discontinuities in the positioning of players and as a
result players found the game difficult to play.
Examination of the movement of the ball throughout
the game, in combination with user feedback, shows

8

that with rising sharp normalisation of players the
game become so difficult to play that it was rare for
players to succeed in kicking the ball at all, thus
eliminating the far larger discontinuities seen at 500
and 750ms latency due to this mechanism’s sharp
normalisation of the ball.

Similarly, it should also be noted that at 1000ms
Rollback had ceased rolling back to correct
inconsistency between players, thus enabling each
player to play independently with very little input
from their opposition. This was caused by an
overflow in the queue of snapshots necessary for
Rollback implementation, with any potential rollback
circumstances occurring proving too old to provide
any data to rollback to. This discrepancy affords an
interesting case for analysis, highlighting the
difference between pure playability and pure
consistency as here basic playability was available,
but at the cost of removing any interaction from the
game.

5.3 Consistency and Playability

Logically, the implication of these results is that a
consistency mechanism must provide a balance of
consistency and playability in order to enable an
enjoyable game experience as intended. Figure 12
provides an indication of the balance provided by
each of the mechanisms in question, with consistency
results plotted (in terms of deviation) against
playability (as measured by the probability of large
discontinuities) for each of the latencies used in the
experiments discussed.

Consistency against Playability

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200

Deviation between players (pixels)

P
ro

b
ab

il
it

y
o

f
la

rg
e

p
o

si
ti

o
n

 c
h

an
g

es

Control

Rendezvous

Rollback

Figure 12 Consistency against Playability

As can be seen from the clustering of the points
representing Rendezvous in Figure 12, increasing
latency has little overall effect on either consistency
or playability using this mechanism. Furthermore, the
points shown on the graph would suggest a weak
trend to maintain a balance between consistency and

playability in Rendezvous. This can be seen more
clearly in Figure 13, where the most extreme points
from both the control and Rollback have been
excluded.

Figures 12 and 13 also demonstrate the clear
tendencies of Rollback and the control (no
consistency mechanism) experiments. In each of these
cases significant effects can be observed as a result of
increasing latency, with Rollback maintaining
playability at the cost of consistency at very high
latency, and the control maintaining consistency at the
cost of all playability.

Consistency against Playability (excluding
extreme points)

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 50 100 150 200

Deviation between players (pixels)

P
ro

b
ab

il
it

y
o

f
la

rg
e

p
o

si
ti

o
n

 c
h

an
g

es

Control

Rendezvous

Rollback

Figure 13 Consistency against Playability Central Points

To summarise, whilst at lower latencies, Rollback
remains the optimal consistency mechanism, above
the local lag threshold, Rendezvous’ more balanced
approach provides the necessary functionality without
detriment to the game as a whole. As can be seen in
Figures 4 and 7, the changes in Rendezvous as a result
of increased latency have little effect on the
consistency of the game, with playability similarly
unaffected.

6. Conclusions and Future Work

Overall, we feel that Rendezvous has proved highly
successful in these trials, with the detailed
comparisons against Rollback confirming that the
platform performs as intended and confirming
suspected limitations of the Rollback mechanism.
Results presented here clearly show Rendezvous to be
capable of operating in high latency environments
equivalent to typical GPRS latencies without
detriment to its ability to maintain either playability or
consistency to its targeted level.

A further comparison which is also of relevance,
although beyond the scope of this paper, is the use of
dead reckoning and prediction methods as a means to

9

combat the effects of high latency. Dead reckoning in
itself does not provide a consistency mechanism, and
is unable, for instance to ensure that estimates of ball
position, and in particular changes in ball position,
correspond to a player being in position to kick the
ball. Furthermore, the method is prone to significant
increases in error as latency increases [12][13], which
across typical GPRS latencies may prove unusable.
However, dead reckoning mechanisms have been
proved to operate successfully on objects such as the
players at relatively high latency (800ms) [14] and as
a result are worthy of further investigation.

Perhaps the biggest question behind loose causal
consistency is not its ability to maintain a degree of
consistency, or, in fact, at this stage the latency at
which it can perform, but rather its effect on game
players. Although the playability rating goes some
way to allaying fears that the game will be
unplayable, qualitative user feedback is clearly an
essential part of this evaluation process. Early
indications, taken during these trials from the
participating players, suggest that at high latency
Rendezvous is indeed the most enjoyable of the
mechanisms presented here, but future more detailed
analysis must be completed before this can be
confirmed. This work is currently underway, and is
intended to not only address playability issues as
applied to the soccer game discussed here, but also
alternative games, including a first person shooter.

Given, at this time, feedback suggesting that the
mechanism was highly successful, preliminary
comments have suggested that the loosely connected
causality may present problems with team play within
the game. To some extent this will be inevitable at
high latency, however, in the subsequent phase of the
Rendezvous project work will be carried out towards
reducing the effects of the mechanism on team game
play, and equivalent alternative applications. This
work will be focused on the development of
prediction and profiling aspects of the platform, and it
is expected will significantly improve the ability of
players to interact.

Rendezvous will also further need to prove itself
under increasing numbers of players. Results
presented here discuss a four player game, but
preliminary trials with eight players have already been
carried out. These trials suggest that with increasing
numbers of players, the peer to peer nature of the
game will place far too much strain on the system

bandwidth, particularly if operating over 3G or GPRS.
To this end, the incorporation of a relevance filtering
mechanism, LUCID [8], as a means of bounding the
utilised bandwidth is already underway. The LUCID
filter uses spatial partitioning [10][11] and area of
interest filtering to ensure that game players only
exchange information with those to whom it is
relevant (in this case the closest players), and it is
anticipated will enable significant saving in overall
bandwidth. Further work is planned to explore any
potential interactions between the Rendezvous
mechanism and the effects of area of interest filtering.

Finally, in deference to Rendezvous’ roots in control
theory, we anticipate longer term future work
focusing on the use of more complex control theory
notions beyond the relatively simple proportional
control put into use here, thus improving the overall
response.

References

[1] Pantel L, Wolf LC, On the impact of delay on
real-time multiplayer games. Proceedings of the
12th International Conference on Network and
Operating Systems Support for Digital Audio and
Video, Miami, Florida 2002, pp 23-29.

[2] Chandler A, Finney J, Rendezvous: Supporting
Real-time Collaborative Gaming in High Latency
Environments. Proceedings of the Second ACM
International Conference on Advances in
Computer Entertainment Technology (ACE 2005)
in co-operation with SIGCHI,15-17 June 2005,
Valencia, Spain.

[3] Prakash A, Knister MJ, A framework for undoing
actions in collaborative systems. ACM
Transactions on Computer-Human Interaction
(TOCHI) Vol 1, Issue 4, Dec 1994, pp 295-330.

[4] Mauve M, How to keep a dead man from
shooting. Proceedings of the 7th International
Workshop on Interactive Distributed Multimedia
Systems and Telecommunication Services (IDMS),
2000, pp 199-204, Enschede, Netherlands,
October 2000.

[5] Jefferson D, Virtual Time. ACM Transactions on
Programming Languages and Systems, July 1985

[6] Jefferson D, Virtual Time II: Storage
Management in Conservative and Optimistic
Systems. Proceedings of the 9th Annual ACM
Symposium on Principles of Distributed
Computing, Quebec 1990, pp 75-89.

10

[7] Armitage G, Sensitivity of Quake3 players to
network latency. Proceedings of Internet
Measurement Workshop Poster Session (IMW),
2001.

[8] McCaffery D, Finney J, The need for real-time
consistency management in P2P mobile gaming
environments. Proceedings of the First ACM
International Conference on Advances in
Computer Entertainment Technology (ACE 2004)
in co-operation with SIGCHI, 3-5 June 2004,
Singapore.

[9] Frecon E, Stenlus M, DIVE: A Scalable Network
Architecture Environment for Distributed Virtual
Environments. Distributed Systems Engineering
Journal (Special Issue on Distributed Virtual
Environments), September 1998, Vol 5, No 3, pp
91-100.

[10] Macedonia MR et al, NPSNET: a multiplayer 3D
virtual environment over the internet.. Proc of the
1995 symposium on Interactive 3D graphics,
Monterey, California, USA, 1995.

[11] Macedonia MR et al, Exploiting reality with
multicast groups: a network architecture for large-
scale virtual environments. Proc of the virtual
reality annual symposium (VRAIS 95), IEEE
Computer Society, 1995, pp 2-10

[12] Pantel K, Wolf LC, On the Suitability of Dead
Reckoning Schemes for Games. Proceedings of
1st ACM SIGCOMM Workshop on Network and
System Support for Games, (Net Games) April
2002. pp 79-84.

[13] Borenstein J, Internal Correction of Dead
Reckoning Errors with a Dual-Drive Compliant
Linkage Mobile Robot. Journal of Robotic
Systems, 1995, Vol 12, No 4, pp257.

[14] Aggarwal S, Banavar H, Khandelwal A,
Mukherjee S, Rangarajan S, User Experience:
Accuracy in Dead-Reckoning Based Distributed
Multi-Player Games. Proceedings of 3rd ACM
SIGNCOMM Workshop on Network and System
Support for Games (Net Games) 2004. pp 161-
165.

11

