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ABSTRACT 

It is well understood that distributed multiplayer 
games, as soft real-time systems, require a degree of 
support from the underlying network in order to 
function correctly, in terms of predictable end to end 
bandwidth, latency and jitter. In a mobile 
environment, such applications face even greater 
challenges, as the latency of wireless networks is 
much higher than their wireline counterparts, jitter is 
often much higher due to network handoff and 
bandwidth is at a premium. In fact, the latency of 
many wide area wireless networks is beyond the 
tolerance of most multiplayer games, rendering such 
applications unusable. 

This paper presents the design and experimental 
evaluation of Rendezvous, a novel decentralized 
consistency management mechanism that enables the 
collaboration of multiple players in mobile real-time 
games, even in a high latency environment. The 
operation of the mechanism is validated through the 
analysis of a real world example - a distributed mobile 
multiplayer soccer game called Knockabout, which is 
designed to operate on the Smartphone platform. 
Experimental results are included not only comparing 
Rendezvous to an existing consistency mechanism, 
but also measuring the length of network delay 
tolerated by the platform and its effect on the players.  
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1. INTRODUCTION 

In recent years, mobile networked gaming platforms 
have expanded from relative obscurity to becoming 
truly ubiquitous, with emerging devices such as the 
Sony PSP and Nintendo DS complimenting the 
existing Nokia N-Gage and Smart phone platforms. 
These devices now integrate wireless network 
technologies including Bluetooth, 802.11, GSM and 
GPRS into high performance multimedia terminals to 
enable distributed multiplayer gaming between 
handsets. These devices pave the way to the next 
logical step in mobile gaming – distributed real-time 
multiplayer mobile games. However, we are unlikely 
to see any significant deployment of such games in 
the near future despite the advanced specifications of 
these emerging devices. This is largely due to the QoS 
characteristics of the underlying network 
technologies, in particular the high latency and low 
bandwidth associated with the wide area wireless 
networks needed to make these devices truly 
ubiquitous. 

The usability of real-time multiplayer games is 
primarily bounded by the latency of the underlying 
network - devices need to wait for consensus to be 
reached between themselves on game decisions (i.e. a 
consistent view of the game to be determined) before 
they can be visualized on any device (i.e state is 
committed). The period of time this takes is obviously 
dominated by the end to end network latency. 
Moreover, the well documented human tolerance of 
delay in interactive systems is approximately 200ms 
[1]. As the latency of many wide area wireless 
networks is already beyond this limit, it can render 
existing consistency mechanisms inapplicable to the 
mobile gaming domain. 

This paper proposes the design and evaluation of a 
novel peer-to-peer consistency mechanism, called 
Rendezvous, which enables the collaboration of 
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multiple players in mobile, real-time games in a high 
latency environment, and provides detailed 
experimental comparisons between this work and an 
existing consistency mechanism, going beyond work 
discussed in our short paper [2]. Unlike existing 
consistency mechanisms that provide a high degree of 
consistency in low latency environments, Rendezvous 
provides the means to tolerate a degree of managed 
inconsistency between game players’ views of the 
game in the short term, thus enabling real-time 
behaviour. In the longer term, Rendezvous aims to 
ensure high level consistency between views is 
reached without penalizing players in terms of 
fairness or overall game playability. The paper goes 
on to provide detailed design and experimental 
evaluation of the Rendezvous mechanism based on 
prototype laboratory implementation and its 
application to a distributed soccer game called 
Knockabout. Results presented include a quantitative 
analysis of the length of network latency tolerated by 
the Knockabout game whilst using Rendezvous, and 
comparisons to the existing consistency mechanism 
Rollback. Further analysis also considers the 
relationship between consistency and playability at 
high latency. 

2. THE NEED FOR A NEW CONSISTENCY MODEL 

It is readily apparent that in any conceivable 
circumstance it is necessary to maintain a consistent 
shared view of the game state between players in 
order to play a real-time multiplayer game. This 
requirement applies as much to multiplayer games 
played on a single shared console as it does to 
distributed games, wired or wireless. However, we 
believe the inherently low bandwidth and high latency 
of today’s wide area wireless networks requires a 
different approach to be taken to maintaining 
consistency of this shared state. 

The most widely used, and highly successful, class of 
consistency mechanism for distributed real-time 
multiplayer games is rollback [3][4], the earliest 
example of which being Timewarp [5][6]. Rollback 
mechanisms rely on a local lag between the player 
performing an action within the game and the game 
actually displaying the consequences of that action. 
During this local lag, state can be exchanged between 
the different instances of the game, and a consistent 
view (or at least compatible views which maintain 
causal ordering) can be reached. Should any 
inconsistencies between views be detected, history 

can be ‘rolled back’, and rewritten unbeknownst to 
the user, provided that the events leading to the 
inconsistency occurred within the period of time 
covered by the local lag. By this means, even events 
which initially arrive late or out of sequence can be 
executed in the correct order with no detriment to the 
player. However, this mechanism relies exclusively 
on the arrival of network events within the local lag 
window, which is necessarily bounded by the human 
tolerance for delay. Once the network delay is beyond 
this critical value, rollback techniques can no longer 
be applied. If they are applied, either the local lag is 
beyond the human tolerance, in which case the real-
time nature of the game is removed, or rollback 
occurs after events have been visualized by the game 
(in which case the rules of cause and effect are 
broken, and the player observes arbitrary and visual 
discontinuities in the game). 

A number of studies have been taken of the maximum 
tolerable latency in gaming for the user, with figures 
ranging from 120ms to 250ms [1][7], and exact 
figures depending on the type of game. These figures 
are critical, because they highlight that existing 
consistency mechanisms as they stand are 
inappropriate to the task of maintaining consistency in 
high latency environments, simply by the nature of 
their construction. Trials show that the end to end 
latency of today’s wide area wireless networks are far 
beyond these levels of delay, with the expected round 
trip time of GPRS networks in the region of 1000-
2700ms [8], and whilst its 3G replacements perform 
better, latencies are still of the order of 400-500ms 
[9]. This implies that today, and for some time to 
come, existing techniques for consistency 
management of multiplayer games cannot be 
effectively applied to the real-time mobile gaming 
domain.  

3. RENDEZVOUS 

Rendezvous is a novel, highly optimistic consistency 
mechanism targeted at the resolution of the current 
stalemate between the need for consistency and real-
time behaviour in high latency collaborative systems, 
including mobile multiplayer games. The novelty of 
Rendezvous lies in its ability to tolerate a degree of 
managed inconsistency between views of shared state 
within a game, rather than attempting to maintain 
complete and absolute consistency at all times. This 
tolerance for inconsistency enables Rendezvous to 
allow each node within the game to visualise actions 
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as they happen, irrespective of the lag between that 
device and the rest of the network, with consistency 
maintained through a shared state convergence 
mechanism. In other words, Rendezvous permits short 
term inconsistencies to arise between views to enable 
real-time behaviour, but controls the flow of the game 
to enable long term consistency.  

3.1 Overview of Consistency Management in 
Rendezvous 
Rendezvous is a support platform which acts in a peer 
to peer fashion. Each node engaging in a game session 
executes an instance of the game application, and 
each of those game instances operates in complete 
asynchrony with the others. Any user input is handled 
within the local instance of the game. e.g. the decision 
to move a local player and its visualization operates 
immediately and in real-time without any external 
input. The degree of consistency between game 
instances is maintained through an entity known as 
the Rendezvous arbitrator which is integrated into the 
game application at compile time. It is the arbitrator 
that is responsible for converging the views between 
the local game state and that of remote instances of 
the game. This is achieved via the application 
frequently and periodically (typically every frame) 
passing a serialized version of its game state to the 
arbitrator in the form of name/value pairs (i.e. 
“positionX, 345”), with one arbitrator operating 
independently at each peer and periodically 
exchanging target states with other arbitrators, as 
illustrated below. 
 

Game
Application

Adaptation 
rule invocations

Local state update

Rule Engine Target Generation State Distribution

Target states from
remote arbitrators

Target state to
remote arbitrators  

Figure 1 - The Rendezvous Arbitrator 

A target state is an optimal point at which all the 
current (probably differing) states held by the various 
game instances could once more become consistent. 
Each arbitrator generates a target state based upon its 
local game state and the last known target state 

received from each of the other arbitrators in the 
session (see Figure 1), and in turn distributes this state 
to the other arbitrators. It is worth noting that 
arbitrators never redistribute the local game state – 
only target states. In essence, arbitrators conspire to 
generate a consistent shared view not of the current 
state, but of some future state which is compatible 
with all of the views. 

Once a target state has been generated, each node 
calculates a means to step towards that target state 
through use of a series of application defined 
adaptation rules, which allow Rendezvous to control 
non-player entities in the game, and even to subtly 
bend the rules of the game universe, thus providing 
each player with a subtly different, but causally 
connected, view of the game. One can consider 
existing rollback mechanisms as optimized 
derivatives of lock step synchronization schemes, or 
transactions. The Rendezvous mechanism lends its 
roots more to control theory – it views the differing 
states as a complex system to be balanced according 
to the set of adaptation rules. 

3.2 Generating the Target State 
Theoretically, a target state should be calculated based 
on its reachability from every current state within the 
game using the available adaptation rules. However, 
this calculation, in particular when applied to 
increasing numbers of players, is known to be of high 
complexity. Furthermore, it is likely that during the 
execution of a game, the target calculation will be 
performed a number of times, thus adding an ever 
larger processing burden on a potentially low power 
processor, such as those found in mobile devices. 
Ordinarily, this reachability calculation would remain 
unavoidable, as it would be necessary to guarantee 
that all nodes were able to converge on the target 
state, but the very nature of the Rendezvous concept 
implies that no target state will ever be reached. This 
is because of the inevitability of the discovery of a 
further inconsistency prior to final convergence on the 
target state; the nodes will tend towards the target 
state, but they are unlikely to ever reach it before a 
further inconsistency is exposed and a new target is 
calculated, incorporating the old one.  

For the purposes of target calculation, the knowledge 
that nodes are unlikely to reach the final target state 
provides an opportunity to simplify the calculations 
necessary to produce that state into a process of 
arithmetically combining the individual state values 
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(such as player location, etc), without the need to 
consider application semantics at this stage.  This 
process often takes the form mean or median 
averaging of values, but is also configurable by the 
application to allow for the handling of less tolerant 
state (e.g. the game score). 

 

Figure 2 - Calculation of the Target State 

Each new target state is calculated from the 
amalgamation of all previous target states received 
from all collaborating nodes in the game, calculated 
as described. This amalgamation is then further 
combined with the node’s current game state, with a 
given weighting, to generate the target. Once 
established, the target state is then distributed to all 
other nodes, where it will be used as an element of 
each other node’s amalgamation during the next 
round of target state generation. Thus, for instance, 
the most recent target state generated by player 1 will 
be sent to each of players 2, 3 and 4 (and also stored 
locally). This target state will then be used by each of 
the four players, including player 1, to determine a 
subsequent target state, with the process continually 
updating and incorporating new information from 
each of the players gradually. These changes are also 
gradually put into effect within the game through the 
use of the adaptation rules.   

3.3 Adaptation Rules 
With the generic functionality of the Rendezvous 
mechanism handled within the arbitrator, the 
adaptation rules provide necessary application 
specific methods, without which the target states 
generated by the arbitrator would be meaningless. The 
function of the adaptation rules is to provide a low 

level understanding of the game, with high level 
decisions remaining strictly in the domain of the 
player, via the arbitrator. 

Adaptation rules are specified by the game application 
and implemented by the games programmer according 
to a defined API. They consist of a precondition 
range, specifying a set of conditions under which the 
rule can be fired, a postcondition range, specifying 
the potential outcomes of the rule, and an 
implementation. These rules are used to model the 
functionality of a game, and expose the 
implementation of that functionality to the arbitrator. 
From here, the arbitrator can choose to invoke the 
implementation of one or more rules to ‘encourage’ 
the local state to converge with the current target 
state. It is important to note that the arbitrator can 
only manipulate the game in ways defined (i.e. 
condoned) by the application programmer, therefore 
guaranteeing that no sudden changes or 
discontinuities will occur in any given view.  

Which adaptation rules fire is, naturally, determined 
by the arbitrator from the current state of the game 
when compared to the target state. This calculation, as 
previously discussed with respect to generation of a 
target state, is also theoretically a complex 
reachability or AI problem, with each rule to be fired 
needing to prove that the ultimate goal of the target 
state will remain reachable once its firing has 
occurred, in order to ensure that local minima in the 
reachability tree are avoided. However, with the 
continual update of the target state itself, the 
difficulties presented by local minima diminish, with 
any problems occurring likely to rapidly disappear 
independently of the process of stepping through 
rules. As a result, more complex calculations are 
justifiably ignored in favour of the more lightweight 
and practical firing of the most appropriate rule or 
rules at each given update. 

The choice of rules to be fired is determined not only 
through matching of projected changes in state with 
relevant pre and post-conditions, but also through a 
hierarchy of consistency requirements. For example, 
in the simple soccer game presented here (see section 
4.1), the consistency of the overall score has a 
significantly higher priority than the accurate 
positioning of a single player. This priority system 
can lead to temporarily increased inconsistencies in 
low priority components of the game, but enables the 
maintenance of key elements critical to the 
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consistency of the game as a whole. As with all 
elements of the adaptation rules, the priorities are 
specified by the application programmer, but are 
catered for through the implementation of the 
arbitrator. 

4. IMPLEMENTATION  

Evaluation of the Rendezvous mechanism is non 
trivial, as the effectiveness of the mechanism cannot 
easily be quantified. Moreover, a simulation of the 
mechanism would fail to reflect the key aspects of the 
system. For instance, player actions in a game cannot 
be easily modelled using existing schemes such as 
random walk, as they are driven by events in the 
game, and the impact of how the game players 
respond to the managed inconsistency could not be 
accurately evaluated through simulation alone. 

In order to evaluate the Rendezvous concepts, we 
opted to develop a prototype of the mechanism and 
evaluate it with a real world mobile multiplayer game. 
The arbitrator was implemented in the Microsoft 
.NET framework using the C# language, for easy 
testing development in the PC environments whilst 
enabling portability to the Smartphone platform to 
allow us to perform user studies. The prototype 
implementation currently consists of approximately 
7400 lines of code, and has a static memory footprint 
of around 60 Kbytes. Furthermore, Rendezvous can 
only be truly analyzed through its effectiveness to an 
application. In this respect, we have developed a 
multiplayer game, also designed for the Smartphone 
platform, called Knockabout. Through this 
application, we measure the performance of 
Rendezvous, and analyze its effectiveness. 

4.1 Knockabout 

Knockabout is a mobile multiplayer soccer game, 
designed to operate with up to 20 players split into 
two teams, each interacting with the game via their 
own gaming handset. Each player in the game 
controls an individual and unique soccer player in 
Knockabout. The game provides a simple top down 
view of the playing area (as shown in Figure 3), and 
allows players to move around the game area (pitch) 
and to dribble and kick the ball, with the aim of their 
team scoring more goals than the opposing team. The 
game is targeted at the SmartPhone and so the screen 
size is limited to 176x220 pixels, but with scrolling 
the overall pitch size is 616x1000. The game was 

developed in C++ using the Gapidraw graphics 
libraries. 

Knockabout runs asynchronously to the arbitrator, 
taking input from the user via the keypad and 
updating the local player instantly. Once per frame 
(30 times per second), the game state is serialized and 
delivered to the arbitrator. This state includes the 
position and trajectory of all players, the ball, and the 
game score. 

  

Figure 3 – The Knockabout Mobile Multiplayer Game 

The game exports adaptation rules and methods to the 
arbitrator which are in keeping with the rules of the 
game. This permits the arbitrator to manipulate the 
actions of any characters in the game other than the 
one controlled by the local human player in a manner 
consistent with the gameplay. Adaptation rules were 
implemented to allow such characters to run around 
the pitch (with no preconditions) and dribble and kick 
the ball (with the precondition that the character is 
close to the ball). A further adaptation rule was added 
to enable a character to shoot at the goal, with the 
capacity to override all other targets (such as 
positioning of characters or the ball), whenever a goal 
deficit is detected. This overriding goal shooting 
method exhibits a higher priority than any other 
adaptation rule, as suggested in the previous section, 
with any positioning of either the ball or players 
according to targets becoming secondary until the 
score is once more consistent. In turn, the positioning 
of the ball takes higher priority than the positioning of 
players, with one or more of the players potentially 
moving further from their target positions in order to 
kick the ball and return it to its own target position. 
Together, these prioritized adaptation rules and 
methods allow the arbitrator to control the local view 
of the game, with the aim of converging it to the 
current target state. 
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Finally, for the purposes of evaluation, Knockabout 
was modified to incorporate a traditional Rollback 
based consistency mechanism, including the 
instigation of a local lag, in order to provide a direct 
comparison to Rendezvous. For the purposes of 
offline evaluation, the facility to log all data 
distributed between game players was also provided, 
with NTP synchronized time stamping. Furthermore, 
with the evaluation performed between desktops over 
Ethernet, a controlled delay queue was added to the 
send method of the arbitrator (and the equivalent 
Rollback method), allowing us to emulate any end to 
end delay we wish between game clients.  

5. EVALUATION 

Evaluation of Rendezvous was undertaken over a 
series of latencies, each providing detailed and 
objective comparisons between the Rendezvous 
consistency mechanism and two alternative solutions: 
Rollback, a well-known consistency mechanism, and 
a control implementation with no consistency 
mechanism. Results were logged for a group of 4 
distributed, players, with each player testing the game 
under the operation of each of the three consistency 
mechanisms at a given latency. Each game ran for 
approximately 5 minutes, with the results shown in 
Figures 4-9 reflecting typical samples from the data 
collected. Subsequent results reflect the entire 
available data set.  

Latencies were chosen to reflect the target of 
consistency management in high latency 
environments, specifically latencies corresponding to 
3G and GPRS latencies, as shown in Table 1. 
Rollback operated under a local lag of 120ms, the 
accepted limit of human tolerance for lag in real-time 
applications [1]. 

Table 1 Evaluation Latencies 

Latency 
(ms) 

Target  

0 Baseline test 

100 Common wired network delay. Just 
below Rollback local lag threshold. 

150 Just above typical local lag threshold. 

500 Typical 3G latency. 

1000 Typical GPRS latency. 

 

Additional latencies of 250ms and 750ms were also 
tested to provide a greater understanding of the 
exhibited trends in consistency at higher latency. 

5.1 Consistency 

In order to provide a quantified measurement of 
consistency in the game, a measurement of deviation 
between game views was necessary. In the case of 
Knockabout, this deviation referred to deviation 
between corresponding players and the ball as they 
moved around the pitch. 

Consistency between players was measured as the 
deviation of the reference player’s view of an object 
within the game with respect to the player’s actual 
position. Ball consistency is taken as the average 
deviation of the ball shown by all players. In each of 
the following graphs, the ball is represented by the 
darkest line, with the 4 players shown in lighter 
colours. 
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Figure 4 Consistency at 500ms in Rendezvous 

Figure 4 shows the deviation between each view of a 
Knockabout session using Rendezvous as its 
consistency mechanism. Both players and the ball are 
illustrated as seen by one of the participating, 
distributed users at 500ms. Firstly, it can clearly be 
seen that the priority of the ball positioning over the 
players has been successful, with the ball shown to 
have a lower deviation than the players throughout the 
game. It can also be observed that the majority of 
larger deviations in player positions correlate directly 
with a deviation in the ball’s position. This can be 
explained by the increased priority of the ball’s 
position over opposing players’ positions within the 
Rendezvous consistency mechanism. In Rendezvous, 
in order to maintain consistency of the ball’s position, 
rules are put in place to ensure that should the ball 
deviate from its consistent target position, one of the 
remotely controlled players will move to intercept and 
return it to its intended position. As a result, any 
discrepancy in the position of the ball will have a 
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subsequent effect on the extent of one or more of the 
players’ deviation. Finally, and critically, the close 
similarities between deviations of all players in 
Rendezvous (relative to the reference player), shown 
by the near precise contours of the lines representing 
the players in Figure 4. This interpretation, confirmed 
by player’s experiences of the game, demonstrates the 
degree of semantic understanding of the game 
maintained through Rendezvous even at high latency. 
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Figure 5 Consistency at 500ms in Rollback 
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Figure 6 Consistency at 500ms in Control 
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Figure 7 Consistency at low latency in Rendezvous 
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Figure 8 Consistency at low latency in Rollback 
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Figure 9 Consistency at low latency in Control 

Taken from the games for the equivalent Rollback and 
control mechanisms, Figures 5 and 6 show the 
deviation of players and the ball at 500ms for 
comparison.  

These three graphs (Figures 4,5,6) clearly demonstrate 
the difference in approach between the three 
mechanisms. Whereas in Rendezvous the tracking and 
recovery of the ball can be seen as a continuous 
process, Figure 6 shows the effects of objects 
normalising when no consistency mechanism is 
available, with the spikes in the graph representing 
large deviations in consistency followed by instant 
repositioning. Furthermore, although Figure 5 shows 
significantly less instances of objects instantly 
normalising, having surpassed the local lag threshold 
within Rollback, there are also instances where a 
rollback results in instantaneous repositioning of an 
object, in particular the ball, as demonstrated by the 
sharp vertical drops in the graph corresponding to 
rapid reductions in deviation from consistency. 

Figures 5 and 6 also demonstrate that both the control 
and Rollback deliver increased consistency of players’ 
positions over the position of the ball, with 
Rendezvous proving far more accurate with ball 
positioning at the cost of the players. 
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The difference between the three mechanisms can be 
further demonstrated by observing the equivalent 
graphs (Figures 7, 8 and 9) at low latency, enabling 
effective use of local lag in Rollback. Here, the 
changes in Rendezvous’ performance (Figures 4 and 
7) are minimal when compared to values at 500ms, 
with the frequency and scale of deviations remaining 
relatively constant. Consistency in the control 
(Figures 6 and 9) also retains the same frequency of 
recovery, with changes that can be attributed purely to 
scale as the normalising process discussed previously 
results in smaller but still significant sharp drops in 
deviation. Rollback, however, (Figures 5 and 8) 
demonstrates entirely changed features, with little 
more than deviation noise displayed. 

To calculate an overall result from the initial 
deviations shown, each of the four players were then 
used as a reference player in turn, as seen in Figures 
4-9, to calculate deviations of each player and the ball 
from every available viewpoint. These results were 
then taken and the mean of the deviations given 
calculated. The overall results given by these 
calculations are shown in Figure 10, below.   
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Figure 10 Overall Consistency Measurements 

As can clearly be seen in Figure 10, with no delay, 
Rollback provides the optimal consistency, whilst at 
higher latencies, Rendezvous gives a far lower 
deviations. It is, perhaps, unexpected however that the 
control, with no consistency mechanism should 
provide the most reliable consistency, according to 
this analysis.  

5.2 Playability 

The revelation that the absence of a consistency 
mechanism can apparently provide better consistency 
than either of the opposing methods, brings into 
question the function of a consistency mechanism in 
real-time games. Naturally, a consistency mechanism 
is intended to provide consistency between players, 
but it must simultaneously enable each player to 

maintain a view which is consistent enough within 
itself to make the game continue to be playable. 
Results shown in Figures 6 and 9 already suggest that 
the instantaneous normalisation feature of the control 
will attribute to an increasingly unplayable game. 

Subsequently, continuity within a player’s own game 
was also calculated, taking the difference in position 
of each object within the game between frames 
(30ms) and using the probability of large, sudden 
movements as a measure of playability. Whilst cross-
player consistency can be measured purely in terms of 
deviation, this measure of playability must necessarily 
allow for a degree of deviation between frames as the 
game progresses. As a result, the change in position of 
objects within the game, from 0 to a maximum of 
1000 pixels (the size of the pitch) were calculated, and 
the probabilities of large changes (>150 pixels) 
occurring were then calculated, with Figure 11 
showing the probability of large position changes for 
each game across each of the chosen latencies. 
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Figure 11 Playability 

Here, the benefits of a working consistency 
mechanism become apparent. Whilst both 
Rendezvous and Rollback maintain playability despite 
increasing latencies, the control, no consistency, game 
rapidly becomes unplayable.    

It is noticeable, however, that there is a sharp drop in 
the probability of large discontinuities for the control, 
no consistency mechanism, at 1000ms latency (Figure 
11). Further investigation can reveal that at 1000ms 
latency the control was experiencing difficulties in 
maintaining consistency of players’ positions, unlike 
at lower latency where only the ball posed any 
problems. This in turn gave rise to increasing, but 
relatively small (between 100 and 150 pixels), 
discontinuities in the positioning of players and as a 
result players found the game difficult to play. 
Examination of the movement of the ball throughout 
the game, in combination with user feedback, shows 
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that with rising sharp normalisation of players the 
game become so difficult to play that it was rare for 
players to succeed in kicking the ball at all, thus 
eliminating the far larger discontinuities seen at 500 
and 750ms latency due to this mechanism’s sharp 
normalisation of the ball. 

Similarly, it should also be noted that at 1000ms 
Rollback had ceased rolling back to correct 
inconsistency between players, thus enabling each 
player to play independently with very little input 
from their opposition. This was caused by an 
overflow in the queue of snapshots necessary for 
Rollback implementation, with any potential rollback 
circumstances occurring proving too old to provide 
any data to rollback to. This discrepancy affords an 
interesting case for analysis, highlighting the 
difference between pure playability and pure 
consistency as here basic playability was available, 
but at the cost of removing any interaction from the 
game. 

5.3 Consistency and Playability 

Logically, the implication of these results is that a 
consistency mechanism must provide a balance of 
consistency and playability in order to enable an 
enjoyable game experience as intended. Figure 12 
provides an indication of the balance provided by 
each of the mechanisms in question, with consistency 
results plotted (in terms of deviation) against 
playability (as measured by the probability of large 
discontinuities) for each of the latencies used in the 
experiments discussed. 
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Figure 12 Consistency against Playability 

As can be seen from the clustering of the points 
representing Rendezvous in Figure 12, increasing 
latency has little overall effect on either consistency 
or playability using this mechanism. Furthermore, the 
points shown on the graph would suggest a weak 
trend to maintain a balance between consistency and 

playability in Rendezvous. This can be seen more 
clearly in Figure 13, where the most extreme points 
from both the control and Rollback have been 
excluded. 

Figures 12 and 13 also demonstrate the clear 
tendencies of Rollback and the control (no 
consistency mechanism) experiments. In each of these 
cases significant effects can be observed as a result of 
increasing latency, with Rollback maintaining 
playability at the cost of consistency at very high 
latency, and the control maintaining consistency at the 
cost of all playability. 
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Figure 13 Consistency against Playability Central Points 

To summarise, whilst at lower latencies, Rollback 
remains the optimal consistency mechanism, above 
the local lag threshold, Rendezvous’ more balanced 
approach provides the necessary functionality without 
detriment to the game as a whole. As can be seen in 
Figures 4 and 7, the changes in Rendezvous as a result 
of increased latency have little effect on the 
consistency of the game, with playability similarly 
unaffected.  

6. Conclusions and Future Work 

Overall, we feel that Rendezvous has proved highly 
successful in these trials, with the detailed 
comparisons against Rollback confirming that the 
platform performs as intended and confirming 
suspected limitations of the Rollback mechanism. 
Results presented here clearly show Rendezvous to be 
capable of operating in high latency environments 
equivalent to typical GPRS latencies without 
detriment to its ability to maintain either playability or 
consistency to its targeted level.  

A further comparison which is also of relevance, 
although beyond the scope of this paper, is the use of 
dead reckoning and prediction methods as a means to 
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combat the effects of high latency. Dead reckoning in 
itself does not provide a consistency mechanism, and 
is unable, for instance to ensure that estimates of ball 
position, and in particular changes in ball position, 
correspond to a player being in position to kick the 
ball. Furthermore, the method is prone to significant 
increases in error as latency increases [12][13], which 
across typical GPRS latencies may prove unusable. 
However, dead reckoning mechanisms have been 
proved to operate successfully on objects such as the 
players at relatively high latency (800ms) [14] and as 
a result are worthy of further investigation.  

Perhaps the biggest question behind loose causal 
consistency is not its ability to maintain a degree of 
consistency, or, in fact, at this stage the latency at 
which it can perform, but rather its effect on game 
players. Although the playability rating goes some 
way to allaying fears that the game will be 
unplayable, qualitative user feedback is clearly an 
essential part of this evaluation process. Early 
indications, taken during these trials from the 
participating players, suggest that at high latency 
Rendezvous is indeed the most enjoyable of the 
mechanisms presented here, but future more detailed 
analysis must be completed before this can be 
confirmed. This work is currently underway, and is 
intended to not only address playability issues as 
applied to the soccer game discussed here, but also 
alternative games, including a first person shooter.  

Given, at this time, feedback suggesting that the 
mechanism was highly successful, preliminary 
comments have suggested that the loosely connected 
causality may present problems with team play within 
the game. To some extent this will be inevitable at 
high latency, however, in the subsequent phase of the 
Rendezvous project work will be carried out towards 
reducing the effects of the mechanism on team game 
play, and equivalent alternative applications. This 
work will be focused on the development of 
prediction and profiling aspects of the platform, and it 
is expected will significantly improve the ability of 
players to interact. 

Rendezvous will also further need to prove itself 
under increasing numbers of players. Results 
presented here discuss a four player game, but 
preliminary trials with eight players have already been 
carried out. These trials suggest that with increasing 
numbers of players, the peer to peer nature of the 
game will place far too much strain on the system 

bandwidth, particularly if operating over 3G or GPRS. 
To this end, the incorporation of a relevance filtering 
mechanism, LUCID [8], as a means of bounding the 
utilised bandwidth is already underway. The LUCID 
filter uses spatial partitioning [10][11] and area of 
interest filtering to ensure that game players only 
exchange information with those to whom it is 
relevant (in this case the closest players), and it is 
anticipated will enable significant saving in overall 
bandwidth. Further work is planned to explore any 
potential interactions between the Rendezvous 
mechanism and the effects of area of interest filtering.  

Finally, in deference to Rendezvous’ roots in control 
theory, we anticipate longer term future work 
focusing on the use of more complex control theory 
notions beyond the relatively simple proportional 
control put into use here, thus improving the overall 
response.  
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