
Real-time Procedural Generation of ‘Pseudo Infinite’ Cities

Stefan Greuter, Jeremy Parker
stefan.greuter@gmx.de,jeremy.parker@rmit.edu.au

Centre of Animation and
Interactive Media

Nigel Stewart, Geoff Leach
nigels@nigels.com, gl@cs.rmit.edu.au

School of Computer Science and
Information Technology

RMIT University, Melbourne, Victoria, Australia

Abstract

We present an approach to procedural generation of ‘pseudo infi-
nite’ virtual cities in real-time. The cities contain geometrically
varied buildings that are generated as needed. The building gen-
eration parameters are created by a pseudo random number gener-
ator, seeded with an integer derived from the building’s position.
The varied building geometries are extruded from a set of floor
plans. The floor plans for each building are created by combin-
ing randomly generated polygons in an iterative process. A display
list caching and frustum filling approach manages the generation of
buildings and the use of system resources. This approach has been
implemented on commodity PC hardware, resulting in interactive
frame rates.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
elling]: Geometric algorithms—; E.1 [Data Structures]: Lists,
Trees; G.3 [Probability and Statistics]: Random number generation;
I.3.7 [Three-Dimensional Graphics and Realism]: Virtual reality

Keywords: real-time, procedural generation, LRU caching, view
frustum filling, architecture

1 Introduction

This work is motivated by the desire to generate visually interest-
ing virtual cities with highly diverse and complex buildings that
are composed of simpler elements. A generated virtual city can be
freely explored from a first person perspective. It is self-contained
and neither imports nor exports geometry.

A procedural generation approach is used to create these virtual
cities. Pseudo random numbers in combination with algorithms
generate a variety of buildings and streets that create the impres-
sion of a city. To increase diversity, individual buildings are gener-
ated on the fly as they are encountered by the user. As a result the
city expands to an extent that would require a ‘lifetime’ to explore,
which we term pseudo infinite.

Procedural generation techniques are widely used in computer
graphics to model systems of high complexity. Many of these tech-
niques target the generation of natural phenomena in high complex-
ity and detail to achieve realistic results. Procedural generation can

be computationally intensive and is not commonly used in real-time
systems to generate entire virtual worlds. However, advancements
in processing speed and graphics hardware make it now possible
to procedurally generate three-dimensional models in real-time on
commodity hardware.

Procedural geometry generated on the fly cannot be prepro-
cessed for performance by the same methods used for static ge-
ometry. To achieve stable frame rates and smooth, coherent naviga-
tion our approach uses view frustum filling and cached display lists.
View frustum filling determines which geometry to draw on the
screen. Display list caching manages the generation of the three-
dimensional content and frees resources no longer in use.

Real-time procedural generation has great potential for applica-
tions in education, architecture, simulation, entertainment or the
playful pursuit of interesting imagery. Virtual worlds that are proce-
durally generated have desirable characteristics such as high degree
of visual variety, flexibility and pseudo infinite extent.

This paper is divided into six sections: Section 2 provides an
overview of related work. Section 3 discusses procedural genera-
tion of floor plans and buildings as well as techniques such as view
frustum filling and hashing to generate and display virtual cities
in real-time. Section 4 provides an overview of OpenGL display
lists and how they are used for geometry caching. Section 5 dis-
cusses the test results of experiments regarding the performance of
city generation, building generation and LRU (least recently used)
caching. Concluding remarks and areas of further work follow in
Section 6.

2 Related Work

Procedural generation has a long tradition in the field of computer
graphics. Techniques include noise [Perlin 1985], fractals [Mandel-
brot 1977], L-systems [Prusinkiewicz et al. 1990] and shape gram-
mars [Stiny 1975]. These techniques are common components of
systems that generate entities such as clouds [Pallister 2000], trees
[Oppenheimer 1986] and other natural phenomena.

Macri and Pallister [Macri and Pallister 2000] describe the pro-
cedural generation of a three-dimensional landscape with trees and
clouds, all based on Perlin noise [Perlin 1985]. Their prototype
demonstrates a procedurally generated terrain with trees and two
dimensional cloud layer. The terrain can be freely explored on the
horizontal plane in real-time and expands around the user’s point of
view.

A system called ‘CityEngine’ [Parish and Mueller 2001] uses ex-
tended L-systems to generate entire city models. The system uses
a hierarchical set of rules to generate street patterns and buildings.
The ‘CityEngine’ does not support the generation of building ge-
ometries in real-time, but facilitates VRML export functionality.

‘The Other Manhattan Project’ [Yap et al. 2001] describes tools
for automatic generation of ‘Manhattan like’ cities based on statis-
tical parameters.

Figure 1: Real-time procedural virtual city

Semi-automated systems to reconstruct the interior of buildings
from two dimensional architectural floor plans have been proposed
[So et al. 1998]. Common tasks of wall extrusion, object mapping,
and ceiling and floor reconstruction are automated, but still rely on
user input. The end result is a three-dimensional model that can be
exported to VRML.

Lecky-Thompson [Lecky-Thompson 2001] explains the princi-
ples of seeded random number generation in relation to procedural
content generation of ‘infinite’ computer game worlds. The princi-
ples are discussed in terms of two-dimensional examples.

Alexander [Alexander et al. 1977] describes construction pat-
terns for the methodical creation of interior and exterior design of
cities, buildings, streets and gardens in various levels of detail. Al-
though these patterns are not organized in a format that can be
directly utilized by computer software, they do provide a useful
guideline to identify significant parameters that govern the visual
appearance of objects and structures.

3 Procedural City Generation

We present a system that generates pseudo infinite virtual cities
which can be interactively explored from a first person perspective.
An example of one of our cities is given in Figure 1. All geomet-
rical components of the city are generated as they are encountered
by the user. The shape of a building is determined by its location.
If the user returns to a particular location the same buildings will
be present. Only buildings and streets which surround the view-
point are generated and stored in memory. Accordingly, buildings
that drop out of the viewing range are deleted and the memory re-
claimed. As a result, the amount of information stored in memory
remains roughly constant, even though the virtual city has no ap-
parent boundaries and can be explored to a pseudo infinite extent.
A similar approach for landscapes has been outlined by Maurice
Danaher [Danaher 2002].

3.1 View Frustum Filling

Real-time 3D applications often use view frustum clipping algo-
rithms to constrain rendering to geometry visible from a particular
viewpoint. In the context here the problem is formulated differently.
Our aim is to fill the view frustum with procedural geometry rather
than cull hidden, existing geometry.

We use the term view frustum filling to describe the restriction
of procedural generation to parts of the virtual world located within
the camera’s view. In our example of a virtual city, view frustum
filling is implemented to determine the visibility of virtual world
objects before generation.

The approach to view frustum filling we have used is to divide
the terrain into square cells on a 2D grid. Each cell represents a
proxy for its procedurally generated content. The cells are arranged
in square loops around the camera’s position located at the cen-
ter. Cells are tested for potential visibility before their content is
generated and drawn. Each cell in our virtual city contains either
buildings or streets.

The potential visibility of a cell is determined by the angle be-
tween the cell and viewing direction, as well as the distance from
the camera. In our implementation only the content of cells located
within a 120◦ viewing angle and a distance of loops× cellsize are
considered visible. Figure 2 shows the visible cells in the viewing
area from a bird’s eye view.

Figure 2: View frustum filling

Figure 3: Floor plan generation: (a) generated source primitive (b) generated temporary primitive (orange) with center translated to randomly
selected vertex in source with extruded top floor (c) merged temporary and source primitive with extruded building section (d-e) another two
iterations (f) finished floor plan with complete building

3.2 Hashing

The form and appearance of each building is determined by a sin-
gle 32 bit pseudo random number generator (PRNG) seed. The
random number sequence determines building properties such as
width, height and number of floors.

Similar initial sequences of random numbers for similar seeds
have been observed with the random number generator we are us-
ing. Similar sequences of numbers can result in recognisably simi-
lar buildings. We avoid the generation of similar buildings by using
a hash function to convert each cell position into a seed.

For hashing we use Thomas Wang’s 32 bit Mix Function [Wang
2000] which is fast and provides a good distribution of seed val-
ues. The function is based on a sequence of bitwise operations and
returns a 32 bit integer value for any ‘key’ as follows.

unsigned int hash(int key)
{
key += ~(key << 15);
key ^= (key >> 10);
key += (key << 3);
key ^= (key >> 6);
key += ~(key << 11);
key ^= (key >> 16);
return key;

}

The x and z coordinates of a cell are hashed with a global
citySeed to determine a 32 bit integer seed value for each building.

seed = hash(x^hash(z^citySeed));

Figure 4(a) illustrates the cell coordinates and Figure 4(b) the
correspondingly generated seed values. The resulting cell seed is
used in the pseudo random number generator and determines the
properties for the cell’s building as illustrated in Figure 4(c) in a
‘feedforward’ process [Lecky-Thompson 2001].

The 32 bit integer for x and z limits the extent of the city to 232

cells in length and width. Cells in our city are 25 meters in width
and length. To travel in a straight line from one end of the city to the
other at a speed of two blocks per second (about 180 km/h) would
take approximately 68 years — a human life time.

(b) (c)(a)

Figure 4: From integer grid to individual buildings: a) 2D grid (b)
hashed seeds (c) procedural buildings

3.3 Pseudo Random Number Generation

Pseudo random number generators are an important component of
procedural systems. PRNGs are used as an integral part of our al-
gorithms which generate floor plans and buildings.

PRNGs produce a sequence of ‘random’ numbers given an ini-
tial seed value. When initialized with the same seed, identical se-
quences of numbers are produced. In the context of procedurally
generated cities the regeneration of the same sequence of numbers
is important. Buildings generated for a particular cell are always
the same, maintaining the coherence of the city.

The quality of the numbers produced by the PRNG is not crit-
ical in our context, since only a few random numbers are used to
generate each procedural object. We use Park and Miller’s [Press
et al. 1992] linear congruential random number generator. This ran-
dom number generator has limitations but is portable, fast and has
a reasonably long period: 2.1×109.

3.4 Floor Plan Generation

Floor plans are two-dimensional polygons. Each floor plan consists
of randomly selected and merged regular polygons and rectangles.
Floor plans are generated by an iterative process, which is based on
the building’s master seed that seeds the floor plan’s PRNG. Floor
plans are generated for each extrusion step from the top level to
the ground level. The first iteration generates a random polygon
which serves as the first floor plan, as shown in Figure 3(a). Fig-
ures 3(b)–3(d) show subsequent iterations, where a new floor plan
is created by generating a new random polygon that is combined

in a union operation with the floor plan polygon from the previ-
ous iteration. The resulting floor plan polygon serves as the source
polygon in the next iteration. Each resulting floor plan is stored in
a std::vector of polygons. All floor plans are scaled to fit into a
unit square and surface normals are calculated. We used the ‘Gen-
eral Polygon Clipping Library’ [Murta 2000] to iteratively extend
the floor plans with random polygon primitives.

Pseudo-code for the algorithm is given below:

Algorithm 1 Floor plan generation
src← random polygon
for every building iteration do

tmp← random polygon
rotate tmp randomly about y axis
translate tmp to random vertex in src
src← src union tmp

(a) Building steps: 1, 4 and 8 steps

(b) Floor plan iterations: 2, 3 and 5 iterations (with no steps)

(c) Building textures

Figure 5: Building parameters

3.5 Building Generation

The outer shape of a building is subdivided into a number of steps
each of which consist of extruded floor plans. The two dimensional
floor plans are transformed to fit the length and width of a building.
As shown in Figure 5(a) floor plans are vertically extruded by a
random height to resemble the various steps of a building.

The extrusion of each building section starts with the top floor.
In Figure 3(b), the top floor is extruded from the second floor plan
iteration and its floor height is limited to a maximum of two sto-
ries. Each consecutive building section is of random height and is
attached to the bottom of the preceding section. The extruded floor
plan increases in number of iterations and size, while the building
increases in height, as illustrated in Figures 3(b)–3(f).

The actual extrusion process is realised by adding the missing
height information to the two dimensional floor plan vertices. Fol-
lowing a counterclockwise order, all floor plan vertex coordinates
are translated by a random height along the y-axis in the negative
direction, as shown in Figure 6.

As part of the extrusion process, texture mapping coordinates are
generated. Mapping coordinates define, by values of s and t, how
textures are applied on the surface of the building. To arrive at an
integer for s, we round the result of the horizontal facade length
and divide by a random building window length between 2 and 4
meters. The integer for t is derived from the rounded quotient of
the section length and the floor height. This process is repeated
for each side of the building. Ten different textures, displayed in
Figure 5(c), of single window styles are used to achieve the virtual
city’s look and feel. Texture coordinates for the roof of the building
are taken from the normalized x and z coordinates of the floor plan
iterations and multiplied by the amount of repetitions.

The top and bottom of each building has the shape of the cor-
responding floor plan, as illustrated in Figure 5(b). The building’s
top and bottom floor plans may be convex or concave. As OpenGL
requires convex polygons the OpenGL Utility Library 1.2 (GLU)
[Chin et al. 1998] tessellation algorithm is used to close each end.

4 Display List Caching

Procedurally generated geometry needs to be stored for use in sub-
sequent frames in order to maximise real-time interactivity. Our
approach is based on the use of OpenGL display lists as an inter-
mediate storage that can be redrawn without the need to regenerate
geometry procedurally.

Display list caching is based on the following assumptions: it
is substantially faster to render a procedural shape than to actually
generate it; geometry drawn in the current frame is likely to be
drawn in subsequent frames (temporal coherence); the granularity
of procedural geometry is fine enough to allow procedural gener-
ation interleaved with display; there is sufficient memory to store
procedural geometry for reuse in subsequent frames.

V0

V1

V0

V2

V3

V4

V5

V6 V7

V8

V9

V10

V11

V12

V13

h

(a) (b)

Figure 6: Floor plan extrusion: (a) floor plan (b) extruded floor plan

We implemented an OpenGL display list cache with ‘least re-
cently used’ (LRU) replacement policy for the cache management
in our pseudo infinite city. The cache is responsible for maintaining
a set of recently used buildings, reusing older display lists for new
buildings, compiling new display lists, and deleting old display lists
as necessary.

Performance aspects of display list caching is examined experi-
mentally in Section 5.2.

4.1 OpenGL Display Lists

An OpenGL display list [Woo et al. 1999] captures a sequence
of OpenGL instructions. The same sequence of instructions are
performed whenever the display list is used. Depending on the
OpenGL implementation, calling a display list is usually more ef-
ficient than issuing the same instruction stream to OpenGL. How-
ever, display lists cannot be modified once compiled — so they
may prove less suitable for dynamic geometry which continuously
changes over time.

Display lists have several advantages in the context of procedu-
rally generated geometry. Nearly all of the available OpenGL func-
tionality is captured without the need for complicated data struc-
tures. This allows ease and flexibility of immediate mode proce-
dural generation and rendering for the programmer, combined with
the performance of compiled display lists in subsequent frames.

The performance advantage using display lists varies between
OpenGL implementations, with the details of display list compila-
tion hidden from the programmer.

4.2 LRU Cache

The total memory requirement and generation time is very high in
a pseudo infinite procedural world. During navigation only a frac-
tion of the world is visible, and it is only this part that needs to
be generated. So-called ‘lazy evaluation’ allows procedural gener-
ation of geometry only as needed. Making use of a cache with a
least recently used (LRU) replacement policy ensures that OpenGL
display list resources are used efficiently, with the reuse of display
lists least likely to be used in subsequent frames.

An LRU cache performs three main tasks: determining if a par-
ticular item is in the cache; inserting a new item into the cache; and
determining the least recently used item in the cache. These queries
need to be efficiently handled and not present a performance bottle-
neck for a real-time procedural world.

key

least recentmost recent
std::list

template<class Key,class Value> class lru

std::map

std::list::iterator

key
value

Figure 7: LRU cache using a list and balanced tree

4.3 LRU Cache Implementation

We implemented our lru container in C++ using a doubly linked
list (std::list) container and a balanced tree (std::map) con-
tainer from the C++ standard library as illustrated in Figure 7.
These two data structures in combination allow tracking of the or-
der of access and efficient queries.

The list is sorted by order of access — items are moved to the
front whenever they are queried, ensuring that less recently used
items drift towards the end of the list. The std::map provides a
fast index into the linked list. Querying a balanced tree requires
O(log n) time, whereas O(n) time is required for a linked list.

The lru container stores pairs of keys and values. The key is the
integer identifier of the procedural building and is used for querying
the cache. The value is a collection of data including the OpenGL
display list identifier and a time stamp corresponding to the time of
last access. The std::map is used to look up list entries based on
the key. Our C++ lru container is templated in order to support
arbitrary keys and values for flexibility:

template<class Key,class Value> class lru
{

typedef std::list<std::pair<Key,Value>> List;
typedef std::map<Key,List::iterator> Index;

public:
const uint32 size() const;
const Value &front() const; // Most recent
const Value &back() const; // Least recent
const Value pop_front(); // Most recent
const Value pop_back(); // Least recent

Value *find(const Key &);
Value &insert(const Key &,const Value &);
Value &insert(const Key &); // Recycle LRU item

private:
List list;
Index index;

};

Algorithm 2 Display list cache draw
while time stamp of LRU item > maxAge do

remove LRU item
delete display list

query cache for requested item

if item already exists then
move item to front of list
update time stamp
draw display list

else
a← age of LRU item > minAge
b← age of LRU item > 1 AND cache capacity exceeded
if a OR b then

reuse LRU item
update time stamp
compile and draw display list

else
insert new item
update time stamp
compile and draw new display list

(a) 100 buildings (b) 200 buildings

(c) 500 buildings (d) 1000 buildings

Figure 8: Procedural City Performance

4.4 Display List Cache Implementation

The display list caching algorithm is described in Algorithm 2. The
behavior of the cache is configured via three parameters: the mini-
mum age of an item before it is reused (minAge); the maximum age
of an item before it is removed (maxAge); and the capacity of the
cache (capacity).

Each item in the cache is time stamped with the number of the
frame in which it was last used. Items ‘age’ when they are not being
used and are available for reuse once they reach minAge. Items may
be reused earlier if the cache capacity is exceeded. Items that reach
maxAge are always removed. Note that the capacity of the cache
is not strictly enforced, the cache will always retain items from the
previous frame whether or not the desired capacity is maintained.
We have used the following settings for our virtual city: minAge is
100 frames, maxAge is 500 frames, and capacity is 1000 items.

5 Performance Results

This section presents performance results of the virtual city, build-
ing generation algorithm and LRU cache. The city prototype is pro-
grammed in C++ using the standard C++ template library, OpenGL
[Woo et al. 1999] and GLUT [Kilgard 1996]. The experimental
platform is a 2 GHz Intel Pentium 4, 512 MB RAM, RedHat Linux
8.0 and NVIDIA GeForce 4 graphics hardware. The implementa-
tion is also portable to other UNIX platforms and Windows. Exper-
iments were conducted using an 800x600 pixel OpenGL window in
32 bit color.

5.1 Procedural City Generation

Frame rate is a common indicator of the overall performance of a
real-time graphical application. Figure 9 shows the performance
in frames per second with respect to the number of buildings dis-
played. The frame rate varies inversely with the number of build-
ings. Figure 8 illustrates the visual difference between a view of the

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

buildings

Figure 9: City performance

city with 100, 200, 500 and 1000 visible buildings. A city with 200
buildings can be displayed at 60 frames per second, whereas a city
with 1000 buildings can be displayed at only 5 frames per second.

5.2 Procedural Building Generation

Display list compilation adds additional overhead to a building’s
generation time. We used a range of ‘building complexities’ to
measure the time for building generation, display list compilation,
and drawing. ‘Building complexity’ combines the degree of floor
plan complexity with the maximum number of extrusion steps and
serves as indicator for the highest polygon count of a building
(worst case). A ‘building complexity’ of 10, for example, describes
a building generated from a floor plan with 10 iterations and 11 ex-
trusion steps. We used a sample population of one thousand random
buildings for each measurement and a range of ‘building complexi-
ties’ from 2 to 20. All buildings were positioned to fill the viewport
and the tests conducted with the depth buffer disabled.

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16 18 20

tim
e

(m
se

c)

building complexity

generate, compile and draw display list
generate and draw (no display list)

draw display list

(a) Generation, display list compilation and drawing

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

pe
rc

en
ta

ge
 (

%
)

building complexity

(b) Display list compilation overhead

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

sp
ee

du
p

fa
ct

or

building complexity

(c) Display list drawing speedup factor

Figure 10: Procedural building generation and drawing

Figure 10(a) gives a comparison of time for building generation,
display list compilation, and drawing from a pre-compiled display
list for various ‘building complexities’. The display list compila-
tion time increases slightly with growing ‘building complexity’ but
remains substantially less than the generation time. Figure 10(b)
shows the display list compilation overhead in relation to the to-
tal display list compilation and drawing time. The overhead grows
slowly with building complexity to around 40% for a high complex-
ity building.

Buildings are typically redrawn hundreds of times without being
regenerated. The longer display list compilation time is therefore
more than compensated by a speedup in subsequent frames. The
result of using display lists is plotted in Figure 10(c) and indicates
speedups of up to eight, depending on the complexity of the build-
ing.

5.3 LRU Performance Characteristics

We conducted experiments to measure the overhead of cache man-
agement. In this experiment, the CPU time required by the lru

 0

 0.5

 1

 1.5

 2

 2.5

 1 10 100 1000 10000 100000 1e+06

tim
e

(µ
 s

ec
)

cache size

std::map
std::hash_map

(a) Display list cache hit

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 10000 100000 1e+06

tim
e

(µ
 s

ec
)

cache size

std::map
std::hash_map

(b) Display list cache miss

Figure 11: LRU performance results

container was measured in two separate scenarios: the time taken
to look up an item already cached (cache hit) and the time taken to
determine the LRU item and reuse it (cache miss). We measured
these times for a range of cache sizes up to one million. We timed
two different index data structures: std::map, and the hash-table
based std::hash map included with GCC version 3.2.

Figures 11(a) and 11(b) show the time required by a cache query
is several orders of magnitude less than the time required to display
the actual item (Section 5.2). Depending on the frame coherence of
the path through the world, cache misses are relatively infrequent
and procedural building generation and display dominates.

These results show that the std::hash map container has a par-
ticular performance advantage over std::map for extremely large
caches. Both containers scale up to around ten thousand items
gracefully. Overall, the caching scheme imposes little CPU load
in the context of a pseudo infinite city. Use of a std::hash map
is preferable to a std::map, but neither can be expected to have a
noticeable impact on the final frame rate.

6 Conclusion

An approach for procedural generation of pseudo infinite virtual
cities, which achieve interactive frame rates on consumer level
hardware, has been presented. A virtual city is generated in real-
time on the fly using only a single integer seed as input. A display
list cache with LRU (least recently used) replacement policy min-
imises procedural regeneration of buildings to make efficient use of
memory and maintain a stable frame rate.

Experimental results indicate that LRU caching overhead is in-
significant, particularly for buildings of high complexity. The
longer compilation time is compensated by increased rendering per-
formance of cached buildings in subsequent frames. When a build-
ing is first generated around 40% of processing time is spent on
display list generation. In subsequent frames a speedup of up to

Figure 12: Street level panoramic view

eight is observed.
Real-time procedural generation poses further technical and

artistic opportunities for exploration in the context of education, ar-
chitecture, simulation, entertainment and art. Software aspects such
as display list caching, hashing and random number generation pro-
vide a general purpose platform for seemingly unlimited and varied
infinite worlds.

6.1 Future Directions

A complex structure like a city poses many interesting problems
that we have not addressed. Further extensions could lead to more
realistic results and better performance.

Virtual cities are ideal candidates for occlusion culling tech-
niques. Our frustum filling algorithm could be extended to perform
occlusion-based prioritisation. Buildings need not be drawn if they
are occluded by nearer ones. The temporal coherence of the city
could be used to accelerate computation in subsequent frames.

Large cities are often composed of a multitude of visually diverse
and interesting buildings and places. We generated our virtual city
with just one building type, an office skyscraper, and 10 different
window textures. Many more building types such as houses, facto-
ries and schools, as well as areas such as park lands, industry and
highways would enhance the realism and intricacy for applications
in art, simulation and entertainment.

6.2 Acknowledgments

This research is partially funded by a scholarship from the German
Academic Exchange Service (DAAD) and an International Post-
graduate Research Scholarship (IPRS) from the Australian govern-
ment and RMIT University.

References

ALEXANDER, C., ISHIKAWA, S., AND SILVERSTEIN, M. 1977.
A Pattern Language: Towns, Buildings, Construction. Oxford
University Press.

CHIN, N., FRAZIER, C., HO, P., LIU, Z., AND
P.SMITH, K. 1998. GLU The OpenGL Graph-
ics System Utility Library. Silicon Graphics Inc.
http://www.opengl.org/developers/documentation/glx.html.

DANAHER, M. 2002. Dynamic landscape generation using page
management. In the 10-th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vi-
sion ’2002 - WSCG 2002, 135–138.

KILGARD, M. J. 1996. OpenGL Utility Toolkit Pro-
gramming Interface API. Silicon Graphics Inc.
http://www.opengl.org/developers/documentation/glut.html.

LECKY-THOMPSON, G. W. 2001. Infinite Game Universe: Math-
ematical Techniques. Charles River Media.

MACRI, D., AND PALLISTER, K. 2000. Procedural 3D
content generation. Tech. rep., Intel Developer Service.
http://developer.intel.com.

MANDELBROT, B. 1977. Fractale: Form, Chance and Dimension.
W.H. Freeman and Co.

MURTA, A. 2000. A general polygon clipping
library. Tech. rep., University of Manchester.
http://www.cs.man.ac.uk/aig/staff/alan/software/gpc.html.

OPPENHEIMER, P. E. 1986. Real time design and animation of
fractal plants and trees. In Computer Graphics (Proceedings of
ACM SIGGRAPH 86), ACM, 55–64.

PALLISTER, K. 2000. Generating procedural clouds in real
time on 3D hardware. Tech. rep., Intel Developer Service.
http://developer.intel.com.

PARISH, Y. I. H., AND MUELLER, P. 2001. Procedural modelling
of cities. In Proceedings of ACM SIGGRAPH 2001, ACM Press
/ ACM SIGGRAPH, New York, 301–308.

PERLIN, K. 1985. An image synthesizer. In Computer Graphics
(Proceedings of ACM SIGGRAPH 85), ACM, 287–296.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C (2nd Ed).
Cambridge University Press.

PRUSINKIEWICZ, P., LINDENMAYER, A., HANAN, J. S., FRAC-
CHIA, F. D., FOWLER, D. R., DE BOER, M. J., AND MERCER,
L. 1990. The Algorithmic Beauty of Plants. Springer-Verlag.

SO, C., BACIU, G., AND SUN, H. 1998. Reconstruction of 3D vir-
tual buildings from 2D architectural floor plans. In Proceedings
of the ACM symposium on Virtual reality software and technol-
ogy 1998, ACM Press, New York, 17–23.

STINY, G. 1975. Pictorial and Formal Aspects of Shape and Shape
Grammars. Birkhauser.

WANG, T. 2000. Integer hash function. Tech. rep., HP Enterprise
Java Lab. http://www.concentric.net/∼Ttwang/tech/inthash.htm.

WOO, M., NEIDER, J., DAVIS, T., AND SHREINER, D. 1999.
OpenGL Programming Guide: The Official Guide to Learning
OpenGL, Version 1.2. Addison-Wesley.

YAP, C., BIERMANN, H., HERTZMAN, A., LI, C., PAO, H., AND
PAXIA, T. 2001. A different manhattan project: Automatic
statistical model generation. Tech. rep., Courant Institute, New
York University. http://www.cs.nyu.edu/visual/.

