
by J. Orwant

EGGG, the Extensible Graphical Game Generator,
is an experiment in automated programming. By
concentrating on a particular domain—games—
EGGG allows users to create applications with a
minimum of programming effort. We codified the
similarities among games and game programs
into reusable software components that
decouple the rules of a game from its
implementation. As a consequence, users can
create games merely by describing the rules to
EGGG, which then generates a fully functioning
game program. In this paper, we survey the
design and implementation of EGGG and provide
some examples of games that can be created
with the system.

Programming is hard. But programming for a par-
ticular domain need not be—assumptions about

the domain can be built into the language and into
whatever system (compiler, translator, interpreter,
or combination of all three) ultimately turns the pro-
gram into an executable application.

Games have several advantages as a domain for au-
tomated program generation. They have the right
amount of diversity (not too little, not too much);
many games can be easily represented with a small
set of rules; and the generated programs need not
be perfect to be usable.

Classic games (poker, chess, tic-tac-toe, rock-paper-
scissors, and so on) are much more alike than one
might imagine, and these similarities were used to
create a universal game engine called EGGG, the Ex-
tensible Graphical Game Generator. EGGG is a pro-
gram that generates programs: designers provide it
with the rules of a game, and the rules are rendered
into an actual computer game ready for play.

The Atari 2600 system revolutionized the game in-
dustry in 1978 because of cartridges; previous sys-
tems (with the exception of the Fairchild Channel
F) were able to play only a static set of games. The
decoupling of hardware and software was made pos-
sible by simpler and more flexible hardware com-
ponents. We take the decoupling further by creat-
ing simpler and more flexible software components.
Instead of decoupling hardware from software, EGGG
decouples a game’s implementation (the “hard soft-
ware”) from the rules of play (the “soft software”).

EGGG uses a high-level language that lets designers
describe games in as few words as possible, while still
retaining the precision that the underlying engine
needs to render the language. The language is ex-
pressive (users can create almost any kind of graph-
ical two-dimensional game) and concise (statements
are short and powerful; debugging is easy because
users can see the entire game on one page).

The design criteria for the EGGG language and en-
gine follow, in decreasing order of importance:

● Game descriptions should be brief.
● Easy games should be easy to generate, and hard

games should be possible to generate.
● The EGGG engine should contain as little a priori

information about particular games as possible.

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

ORWANT 0018-8670/00/$5.00 © 2000 IBM IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000782

EGGG:
Automatedprogramming
for game generation

● It should be easy to create variations.
● The EGGG engine and the games that it generates

should be portable across platforms.
● The games generated by EGGG should be easy to

modify.
● EGGG should not take a long time to generate

games, and the games that it does generate should
not run so slowly that playability is affected.

Game categories and descriptions

A taxonomy of games was developed for EGGG and
is described in detail elsewhere.1 Unlike most pop-
ular game categorizations that focus on the struc-
ture of the game, or game theoretic categorizations
that focus on information and probability, we focus
on what matters to a game developer: process. We
classify games according to the following attributes:

1. Frenetics—whether the game requires quick ac-
tion, or is timed (used to determine how [and
whether] EGGG generates a pause feature for the
game)

2. History—how many player actions need to be
stored to play the game

3. Synchrony—whether players move all at once,
or in order, and if so what that order is

4. Movement—what players do (divided into
moves, phases, turns, rounds, and steps)

5. Topology—the shape of the game (e.g., rectan-
gle, sphere, or “zero-dimensional” games like in-
teractive text-based games)

6. Board—the playing surface (grid, graph, canvas,
or none at all)

7. Pieces—the attributes of items on the board,
whether they have state, color, or other artistic
meaning, and how they are grouped

8. Compartments—whether there are occluding
barriers that prevent players from seeing infor-
mation possessed by other players, or by the
game itself

9. Genre—whether the game has a theme, and how
important that theme is to the play of the game

10. Information—what communication occurs be-
tween players during game play, whether the
communication is intentional or inadvertent, and
whether the communication is intended to help
or confuse

11. Referees—whether the game has an umpire, or
just competitors

12. Endings—what determines when the game is
over (not necessarily the same as a player’s goal)

An example game description: Poker. To use EGGG,
the first step is to create a game description—typ-
ically a page or half-page of text provided as a file
with an .egg extension. Here is the game descrip-
tion for poker:

game is poker
turns alternate clockwise
Discard means player removes 0..3 cards or 4 cards

if Ace
Fold means player loses
2..6 players
game is Shuffle(deck) and Deal(cards, 5) and (bet(money)

or Fold) and Discard(hand, N) and Deal(cards, 52N)
and (bet(money) or Fold) and compare(cards)

StraightFlush is (R, S) and (R21, S) and (R22, S) and
(R23, S) and (R24, S)

FourKind is (R, s) and (R, s) and (R, s) and (R, s)
FullHouse is (R, s) and (R, s) and (R, s) and (Q, s) and

(Q, s)
Flush is (r, S) and (r, S) and (r, S) and (r, S) and (r, S)
Straight is (R, s) and (R21, s) and (R22, s) and (R23,

s) and (R24, s)
ThreeKind is (R, s) and (R, s) and (R, s)
TwoPair is (R, s) and (R, s) and (Q, s) and (Q, s)
Pair is (R, s) and (R, s)
HighCard is (R, s)
hands are [StraightFlush, FourKind, FullHouse, Flush,

Straight, ThreeKind, TwoPair, Pair, HighCard]
hand is five cards
goal is highest(hand)

Game descriptions are a series of statements, which
can appear in any order. The EGGG language inten-
tionally has no flow control; it is a description and
not a program. Statements can be split across mul-
tiple lines, as long as lines after the first are indented.
Comments can appear anywhere, and begin with #.

These 17 lines are all that is required for EGGG to
produce a fully functional poker program. Tic-tac-
toe and rock-paper-scissors each require only eight;
chess requires 85. A screenshot of our poker game
is shown in Figure 1.

A sample heuristic: How does EGGG know that
poker is a game of rounds? Participants play many
rounds of rummy at a sitting, but not many rounds
of chess. EGGG needs to know whether poker is more
like rummy or chess; in particular, it needs to know
whether to maintain state between games. Without
knowing that poker consists of rounds, EGGG would
display GAME OVER at the end of a poker game, and

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 ORWANT 783

empty the player’s coffers if the player chose to play
again.

When EGGG creates a game, it employs several dozen
heuristics that embody the similarities between
games. As a sample heuristic, we examine the rule
that EGGG uses to decide that poker is a game of
rounds. The heuristic is that a game is not played in
rounds if it fulfills any of these conditions:

● The game has levels (as in arcade games where a
succession of foes need to be defeated).

● The game has a particular solution (as in cross-
words, logic puzzles, or number puzzles).

● The game has no hands.
● The game has hands, but the hands contain more

than 13 pieces per side.
● The game is played on a grid with more than 25

squares.

A new game: Deducto. In this section, we describe
an entirely new game created with EGGG. The new

game is called Deducto, and is a logic game played
on a 5 3 5 square grid. The game is described in 42
lines of EGGG, and a sample game board is shown
in Figure 2.

Each of the 25 squares is either black or white. We
can see from the label above and to the right of the
squares that this game has levels; each level has a
secret rule, and the player’s goal is to determine the
rule. The rule for Level 1 is simple: at least half the
squares in the grid must be white.

When the player presses the Example button, the
game generates a random grid satisfying the rule. If
a player then selects one of the grid squares, it
changes color (from black to white, or from white
to black). Thus, a player can take a compliant grid—
one that satisfies the current rule—and make it non-
compliant, or vice versa. The player can then test
whether the board satisfied the rule by pressing the
Test button.

Figure 1 A poker game generated by EGGG

ORWANT IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000784

When the player thinks he or she understands the
rule, the player presses Understand. The game then
generates either a board that satisfies the rule or a
board that does not, each with probability 50 per-
cent. The board is displayed, and the player is
prompted to Vote Yes if the grid fits the player’s un-
derstanding of the pattern, or Vote No otherwise.
When the player guesses correctly five times in a row,
he or she moves on to the next level.

Deducto highlights one limitation of EGGG: the lan-
guage required to express the rule behind each level.
The rule might be simple, like counting the white
squares at each level, or it might be complex. Maybe
the number of white squares at each level has to be
a prime; maybe the white squares have to form a let-
ter, or a face; maybe the squares have to encode the
current time. Here is the rule that tests whether a
grid satisfies Level 1. This demonstrates how EGGG
lets game designers burrow down into its implemen-
tation language: Perl.

Tester(1) is Tot11 if grid[x][y]; return Tot . 12

Most EGGG statements are simple declarations like
goal is maximize(level), but statements like Tester(1)
show how designers can express the programmatic
behavior that some games require. Here are two
more statements for Deducto:

assert VoteYes: lastmove(''Understand'')
assert VoteNo: lastmove(''Understand'')

EGGG allows game designers to create actions that
will be triggered at particular times. These two as-
sertions are conditions that must be satisfied for the
VoteYes and VoteNo subroutines to be invoked. If the
player’s last move was not to press the Understand
button, nothing will happen when the user presses
either VoteYes or VoteNo. That is to prevent users
from cheating; otherwise, they could use the Test but-
ton to learn whether the grid matches before voting
yes or no.

Variations. EGGG makes it easy to create variations
on games. Game designers can copy game descrip-
tions from EGGG’s central repository and modify
them, or they can take the game description and cre-
ate a new game description with a rule like Random-
Chess is like Chess, which fetches the rules for chess
from EGGG’s repository and uses them as a starting
point for modifications.

For the October 1998 News in the Future consor-
tium meeting at the MIT Media Laboratory, a se-
quence of five variations on the Tetris** arcade game
was demonstrated, each building on the last.

The game was turned on its side, so that pieces went
from left to right instead of from top to bottom:

SideTetris is like Tetris

The game was changed from one player to two, so
that the “serving” player could choose the piece:

TwoPlayerTetris is like SideTetris

Players were then allowed to bounce pieces back to
the other side:

BounceTris is like TwoPlayerTetris

The game was made faster:

BounceFast is like BounceTris

Figure 2 Deducto, a new game created with EGGG

File

Deducto

Example Test Understand VoteYes VoteNo

Level: 1

Preferences Help

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 ORWANT 785

The pieces were all made square:

SquareBounce is like BounceFast

The top and bottom edges were made less sticky, so
that pieces bounced off:

Pong is like SquareBounce

The result is Pong, the classic video game.

Other work

In this section, we describe two systems that inspired
EGGG: the Programmer’s Apprentice and METAGAME.

The Programmer’s Apprentice. The Programmer’s
Apprentice is an automated programming effort
headed by Charles Rich and Richard Waters of the
MIT Artificial Intelligence Laboratory.2 The project
yielded a series of intelligent assistants for software
engineers: programs that helped programmers for-
malize requirements, create and edit programs, and
analyze the programs they created.

EGGG differs from the Programmer’s Apprentice in
that its goal is simultaneously both more and less am-
bitious. EGGG is more ambitious in the sense that it
is an attempt to create something that people with
a minimum of programming skill can use: its target
audience is not programmers, but people who want
to create computer games—people who may not
have much (or any) programming experience. EGGG
is less ambitious in that it drastically constrains what
can be created. EGGG does not do requirements anal-
ysis or program verification; it simply generates
games.

METAGAME. METAGAME3 is similar in spirit to
EGGG, but arose from a different premise. For a long
time, chess was considered a formidable problem for
AI (artificial intelligence). The reasoning was that any
program that could beat an expert player, or even
a competent one, would possess some of the intel-
lectual capacity of a human. Yet IBM’s Deep Blue
and other successful chess programs demonstrate
that this is not necessarily the case: chess programs
have gotten better largely through improvements in
computer power and in “hardwiring” knowledge of
chess into the architecture. Put another way, chess
is not AI-complete: just because a program is an in-
telligent chess player does not mean that it is intel-
ligent.

Barney Pell’s METAGAME strives to bring AI into
computer game playing. He suggests that the test of
a computer’s game-playing prowess should not be
chess, or even Go, but the ability to play a game with
no a priori knowledge. To this end, Pell develops a
formalism for representing “symmetric chess-like”
(SCL) games, including a proof that all finite two-
player games of perfect information (that is, games
that can be represented as game trees) can be rep-
resented using his formalism. A computer program
that can play arbitrary SCL games is called a metagame
player.

Pell goes on to develop an evaluation mechanism
for metagame players and a program that generates
games that are similar to chess, but with random
rules. He then tests his METAGAMER program against
several such games and reports the results.

METAGAME is a mathematical framework for devel-
oping programs that can play games well, in contrast
to EGGG, which is a system for developing games.
Nevertheless, METAGAME has influenced the design
of EGGG in a few ways. In particular, EGGG uses log-
ical predicates that represent changes in the state of
game play. Quoting Pell, 4 page 104:

In addition, these predicates are all logical, in that
state is represented as a relation between two var-
iables, StateIn and StateOut, instead of a global
structure which is changed by side effects (as in
a current board array used in many traditional play-
ing programs). This enables a program to use the
predicates in the domain theory in both directions.
For example, by constraining SOut in Figure 12.2
instead of SIn, a program can determine possible
predecessor states, thus using the rules “in reverse”
to find all the positions which would have been
legal before a given move.

EGGG has global structures that are changed by side
effects, but it also has “actions” that are passed
around, composed, concatenated, and hypothesized
about, just like METAGAME.

Implementation

The games that EGGG generates are Perl programs,
and EGGG itself is written in Perl. Perl is ideal for
several reasons: its portability means that the games
will work on all major platforms without needing to
change or compile either the engine or its generated
games. It is fast enough for arcade games; its sup-
port for regular expressions makes parsing the game

ORWANT IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000786

descriptions efficient; its built-in hash tables are ideal
for representing nested data structures; and it has
powerful and free mechanisms for networking, per-
sistent storage, and database support.

Data structures. Every game generated by EGGG has
two umbrella data structures: the %game and %state
hash tables. (In Perl, a % denotes a hash table.) The
first contains the permanent aspects of game play.
The contents of %game vary from game to game,
typically including:

● $game{type}, the type of the board. (In Perl, a $
denotes a single value.)

● $game{sides}, the dimensions of the board
● $game{board_start}, the initial board configuration
● $game{num_players}, the minimum and maximum

number of players
● $game{synchrony}, the synchronization of the game

These are all attributes that remain constant regard-
less of who is playing the game or how it is being
played. For instance, in a crossword puzzle, the ar-
rangement of the black and white squares is part of
the %game data structure ($game{board}, in partic-
ular).

In contrast, the actual letters that the player has writ-
ten are stored in $state{board}. The %state data struc-
ture complements the %game data structure; it is a
hash table containing the ephemeral aspects of game
play such as these:

● $state{board}, what is on the board at the moment
● $state{player1}{name}, $state{player2}{name}, . . . ,

the names of the current players
● $state{turn}, whose turn it is

Documentation. While EGGG has no deep under-
standing of the games it generates, it is able to doc-
ument them. EGGG generates both documentation
for the developer (comments in the Perl programs
that it creates), and documentation for the player
(how the game is played).

When EGGG parses a game description, it ignores
case and number wherever possible. For instance,
players are white and black is interpreted identically
to players are black and white. This is ostensibly to
make designing games easier, but it has another ad-
vantage: by letting game designers express their rules
grammatically, EGGG can transform the rules into
instructions without a deep understanding of what
the rules mean. For instance, this line would be trans-

lated into the English sentence “The two players are
black and white,” which is one of many sentences
players will read when they select Instructions from
the game’s pull-down menu.

Computer opponents

Computer programs that play two-player determin-
istic games (such as chess, tic-tac-toe, Reversi, or Go)
typically consist of three components: a minimax pro-
cedure, a static evaluator, and a library of precal-
culated moves. For such games, EGGG generates a
computer opponent for humans to play.

A generic minimax procedure. EGGG has a gener-
alized minimax procedure with no a priori knowledge
about a particular game. It requires only the %game
and %state data structures, and returns the opti-
mal move for the current player. It includes an
enumerate_moves() subroutine, which iterates
through all of the player’s pieces, identifying all the
possible moves for each, and eliminating any moves
deemed illegal by the game description.

A generic static evaluator. Using the following pro-
cedure, EGGG generates a score_ board() subroutine
(the static evaluator):

● Set the board score to zero.

● If the goal is binary or trinary—that is, players ei-
ther win, lose, or draw—loop through all the pieces
on the board as follows:

1. Set piece_score equal to the power of the piece.
(Power is defined in the next section.)

This step ensures that pieces with no moves and
no surrounding empty squares are not ignored.
Because we are looping through all the pieces,
this rule rewards boards in which the player has
more pieces and the opponent has less, so cap-
turing is favored.

2. Increment piece_score by the power of the piece
times the nth root of the number of moves it
has available, where n is the dimension of the
board, or the density of the board if it is rep-
resented as a graph.

3. For each location on the board, increment
piece_score by the power of the piece divided
by the nth root of the distance of that location
from the piece.

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 ORWANT 787

This rewards pieces played in the center of the
board, which is good for chess but bad for Go.
On a standard 8 3 8 chessboard, this weights
the squares as shown in Figure 3 (assuming unit
power).

● If the goal is comparative—that is, the player’s goal
is to maximize (or minimize) some quantity, like
points or dollars—the game description might sup-
ply a direct means of determining how many points
a board is worth. If so, that is used; otherwise, the
piece power is replaced by its expected value (de-
scribed below) if it can be calculated. The pieces
are then looped through as above.

This static evaluator will perform quite badly in com-
parison to one hand-tuned for a particular game.
However, it can be dropped into any game, and in
most games it will be better than nothing.

Estimating piece power. To score a board, the static
evaluator uses an estimate of the value of a piece,
called the power. The power of a piece is computed
as motility times rank times rarity.

Estimating piece motility. The static evaluator heu-
ristic uses the number of moves available to a par-
ticular piece in some situation—that is, the piece in
a particular %state. Here, we consider the number
of moves available to a piece in all situations.

EGGG examines the rules involving the piece motion
in the game description file. For each piece, the rank
is calculated by setting $game{piece}{rank} to 0, then
extracting all the rules involving motion of that piece
and looping through them:

1. Increment $game{piece}{rank} by the length of the
rule.

This step might seem arbitrary at first glance, since
longer rules count more toward motility, regard-
less of what the rule means. A very long rule—
say, one that applies only in unusual conditions
and hence needs many expressions to describe—
will add linearly to the piece motility in spite of
the rarity of the situation it describes. This is com-
pensated in part by the next step, which has much
greater potential to affect the rank.

In a game like Stratego, this first step has the ef-
fect of weighting immobile pieces like flags and
bombs more heavily than mobile pieces; this heu-
ristic is really more about estimating the impor-
tance of a piece than estimating its motility. For
chess, this step weights the king more heavily be-
cause of the rules describing checkmate and cas-
tling. One can make the argument that if there
are lengthy rules describing what a piece can do,
it is more likely that the piece is important.
Whether this is a good assumption for games is
very much open for debate, although it does work
well for the subset of games used to test EGGG.

2. Increment $game{piece}{rank} by the dimension
of the board (or density of the graph) raised to
the power of itself, minus the board dimension
(or density) raised to number of dimensions that
are constrained in the rule describing piece mo-
tion.

3. Divide $game{piece}{rank} by the square of the
number of times the piece occurs in the starting
board configuration.

Finally, the ranks are normalized so that the lowest
ranking piece has rank 1. The result, applied to the
chess.egg game description, follows:

$game{King}{rank} 5 23.6277551725428;
$game{Queen}{rank} 5 15.2191074823911;
$game{Rook}{rank} 5 3.95340184744318;
$game{Knight}{rank} 5 3.11256637988997;
$game{Bishop}{rank} 5 2.72902739469025;
$game{Pawn}{rank} 5 1;

Figure 3 Weights assigned to chessboard squares

29.2 31.2 32.4 32.9 32.9 32.4 31.2 29.2

31.2 33.6 34.9 35.6 35.6 34.9 33.6 31.2

32.4 34.9 36.5 37.2 37.2 36.5 34.9 32.4

32.9 35.6 37.2 38.0 38.0 37.2 35.6 32.9

32.9 35.6 37.2 38.0 38.0 37.2 35.6 32.9

32.4 34.9 36.5 37.2 37.2 36.5 34.9 32.4

31.2 33.6 34.9 35.6 35.6 34.9 33.6 31.2

29.2 31.2 32.4 32.9 32.9 32.4 31.2 29.2

ORWANT IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000788

In comparison, chess books for beginners typically
rank the pieces as follows:

King 5 infinity
Queen 5 9
Rook 5 5
Knight 5 3
Bishop 5 3
Pawn 5 1

Estimating piece rank. A piece has rank if it can cap-
ture pieces that cannot capture it, or if it has a higher
point value than another piece (such as in playing
cards: a jack is higher than a ten, a ten is higher than
a nine, and so on).

The rank of a piece may be hard or impossible to
calculate if the piecewise comparisons are intransi-
tive. Rank is impossible to calculate in rock-paper-
scissors, since the three “pieces” form a cycle: rock
beats scissors, scissors beats paper, and paper beats
rock; here EGGG gives each piece rank 1. In contrast,
consider Stratego, in which the pieces form a strict
military hierarchy: the marshal beats the general, the
general beats the colonel, and so on down to the
scouts, which beat the lowly spy. But the spy can beat
the marshal. It might seem that no ranking makes
sense. However, there is only one spy and one mar-
shal, but there are eight scouts, each of which can
capture the spy. The spy has eight ways to be cap-
tured, and the marshal only has one, so EGGG ranks
the marshal higher than the spy—and from there,
the rest of the piece rankings follow.

Estimating piece rarity. When the pieces are part of
a bag (in the mathematical sense: a set, but allowing
duplicates), the rarity is the size of the bag divided
by the number of times the given piece occurs in the
bag. In Scrabble, letters J and Q and Z occur only
once; they each have a rarity of 100, because there
are 100 tiles in a Scrabble set. In chess, the king and
queen have rarities of 16; rooks, bishops, and knights
have rarities of 8; and pawns have rarities of 2.

Estimating piece expected value. In some compara-
tive games, the power of a piece can be calculated
directly. The possible outcomes are enumerated and
the ranking of each established; the expected value
of the piece is then the sum of the scores where the
piece is on the board, divided by the sum of the scores
of all possible boards.

For instance, it is clear that a king is worth more than
a queen in poker, but it is not clear how much more

it is worth. Similarly, an ace is worth more than a
king in poker—and the difference between an ace
and a king is greater than the difference between a
king and a queen, because the ace can be used in
more hands (low straights as well as high). When all
possible outcomes of the game can be enumerated,
as they can be in poker, EGGG can directly calculate
how much each piece is worth without relying on
the more ad hoc heuristic used to estimate piece
motility.

A generic library of opening moves. When run in a
“public mode,” EGGG games communicate game re-
sults back to the central repository. EGGG uses this
global history (the game history of all sessions played
by anyone on the Internet, as opposed to the local
history, the series of moves during one game session)
to amass a library of opening moves. Every night,
EGGG follows these steps:

1. Store all of the game names in a @games array.
2. Remove a game from @games.
3. Extract the opening moves of the game into

@array.
4. Sort @array by frequency of occurrence.
5. Pop the first sorted move off @array.
6. If there are no more moves, move down the game

tree one level (from the opening moves to sec-
ond moves, or from second moves to third
moves), extract the moves into @array, and go
to Step 4.

7. Calculate the chi-square value for two hypoth-
eses: that the move wins more often than it loses,
and that it loses more often than it wins.

8. If either move is statistically significant at the
0.05 level, store it.

9. If 1024 significant moves have been found for
the game, go to Step 2.

10. If the entire game has been searched, go to Step
2.

11. If the amount of time spent evaluating the re-
sults exceeds the number of games in EGGG’s re-
pository, divided into six hours, go to Step 2.

Strategies. In this section, we discuss techniques that
EGGG employs to predict what human players will
do, or what they are thinking. Some of this work de-
rives from the techniques used in DOPPELGÄNGER5

to identify an individual’s taste in news. In that do-
main, the problem is one of incomplete information:
given only a few bits of information about a reader
of known gender (say, which articles he read, or when
he last read his newspaper), how can the system de-
duce why he read those articles, or when he will next

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 ORWANT 789

read his newspaper? This can be viewed as a game
of incomplete information, and EGGG uses the same
model to make its assertions about players as
DOPPELGÄNGER did about newspaper readers.

Analyzing strategies with hidden Markov models. Given
a discrete series of symbols, and a series of math-
ematical models that generate symbols, a hidden
Markov model technique allows a system to deter-
mine what model is most likely to be generating those
symbols. For our purposes, the “symbols” are player
moves, and the “models” are player strategies.
EGGG’s goal is to determine the player’s strategy given
his or her moves, and it uses a hidden Markov model
algorithm6 (in particular, the Viterbi lattice algo-
rithm) to make that determination.

About a dozen simple strategies have been included
in EGGG: simple functions that, given a history of
player moves, return what the next move should be
for a given player. EGGG’s implementation of the Vit-
erbi algorithm accepts an arbitrarily large set of these
functions along with the game history, and then ranks
the functions according to their success in predict-
ing those histories. That is, given the first move, how
well did each strategy predict the second move?
Given the first two moves, how well did each strat-
egy predict the third move? The results allow EGGG
to infer what (if any) strategy a player is using, with-
out requiring that the player’s moves rigidly adhere
to the strategy. The Viterbi algorithm is also toler-
ant of players who switch strategies midgame.

Consider rock-paper-scissors, which is a simple game
with only three kinds of moves. There would seem
to be no possible successful strategy for winning at what
appears to be a game of pure chance.

Here is the game description for rock-paper-scissors:

move is choose
pieces are Rock and Paper and Scissors
board starts [[Rock, Paper, Scissors]]
turns synchronize
Beat means player(Rock) and opponent(Scissors) or

player(Scissors) and opponent(Paper) or player(Paper)
and opponent(Rock)

goal is Beat
score increments
3 3 1 grid

A screen image of the game is shown in Figure 4.
The player presses either rock (the fist), paper (the
open hand), or scissors (the two fingers), and the
computer opponent reveals what it picked. The trick
to winning this game is predicting what your oppo-
nent is going to do, and choosing the one symbol that
beats it. In a session of multiple rounds, EGGG re-
cords the move histories and attempts to infer the
player’s strategy. The longer the history, the more
information EGGG has to reveal the strategy, and the
better its predictions will be.

The most common strategy in rock-paper-scissors is
to aim for a draw over the long term: choosing ran-

Figure 4 Rock-paper-scissors, a seemingly trivial game

File

Rocky has moved. Proof: 6ec22e8d46e98df39a08e3dd1afe2917

Preferences Help

Play again Score: 0

ORWANT IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000790

domly so as to reveal no information to EGGG. Were
players to actually choose randomly, this strategy
would be successful at accomplishing its modest goal.
Unfortunately (for the players) guessing randomly
is harder than it might first appear. As an exercise,
write down a sequence of ten instances of R, P, or
S, simulating how you would play EGGG if you were
trying to guess randomly. The strings generated prob-
ably look like this:

RSPPRSRPSSP
SPRPRSRPPRS
SSRPPRSRPSR
RPSSRPRPPSS

Those look pretty random. Here are some strings
generated at random with the help of a computer.

PRRSRSPRPRS
RRPRRRPRPRS
PSSPRRSSSRR
PRSPPRPRRPP
RPSPPSSPRSP
RPPPSSRSSPS
PSSPSPRPRRR
SRRPRPSRSSR
SSRRRPRSPSR
RPSRPRPSSSP
SSPRSPSRSRP

(This was the first and only run of the program.) Note
that six of the ten truly random strings have runs of
three: RRR, or PPP, or SSS; one would expect 56.4 per-
cent of randomly generated strings of ten symbols
to have a run of three. None of the seemingly ran-
dom strings has runs of three. This is the key to the
strategy: when players try to guess randomly, they
usually do so in a predictable way, and EGGG’s com-
puter-generated opponent exploits this as it plays.

Generating hypotheses with the chi-square test and beta
distribution. In a game like rock-paper-scissors, it
might be the case that a player has an inherent bias
toward a certain piece. Perhaps he or she is trying
to be random but really is not, or perhaps he or she
is following some strategy that is more likely to
choose one piece than another. If someone plays
rock-paper-scissors for nine rounds and chooses rock
five times, paper twice, and scissors twice, is it fair
to assume that the player favors rock? Or are nine
rounds too little to make that conclusion? Nine
rounds is too little; we know this because of the chi-
square test from statistics. EGGG makes simple
hypotheses of this sort and tests them with Perl’s
Statistics::ChiSquare module (written by the author)

to establish a confidence level for the hypothesis. (If
a 5:2:2 ratio between the three choices is observed, the
player would need to play 43 rounds for the hypoth-
esis to be statistically significant at the p 5 0.5 level.)

If a player beats EGGG at chess, that suggests that
the player is better than EGGG at chess. But what
does that tell us about the player’s innate ability?
Less than it would seem. The commonly accepted
Elo7 chess ranking system assumes that a player’s
performance can be described by a normal distribu-
tion, but as Beasley8 points out, this is almost cer-
tainly not the case, and the research supporting this
contention is specious.

Some EGGG strategies rely on an assumption that
the player has less than (or more than) a particular
degree of skill. It is one thing to say that our best
estimate for the player’s skill is 0.7; how can we es-
timate the likelihood that the player’s skill is less than
0.8? The beta distribution is used to estimate the play-
er’s skill, allowing EGGG to establish confidence lev-
els for estimates other than the most likely. The sys-
tem maintains the entire play history, and weights
more recent outcomes more heavily to account for
improvements in the play of both the player and
EGGG. The beta distribution yields both an assertion
about strength and a confidence that the strength is
accurate. The strength is easy to calculate: just the
mean of the distribution, which is trivially the num-
ber of wins divided by the number of wins plus the
number of losses. The confidence is defined as the
inverse of the variance. For instance, if a player plays
EGGG ten times and wins seven times, the strength
is 7/10 5 0.7, and the confidence is 1100/21 5 52.381.

Making interesting moves and probabilistic bluffing.
When the confidence levels for all its strategies is
below a particular threshold, EGGG has little infor-
mation about how to play; every opportunity seems
equally attractive. EGGG sorts the available moves
from most to least attractive based on the static eval-
uator output. Early versions of its computer oppo-
nents would simply choose the first move on that list,
without regard to whether subsequent moves were
equally attractive. The result was dull play: given a
game state, EGGG would always make the same ex-
act move. So what EGGG does is to choose randomly,
but to make the probability of each move propor-
tional to its attractiveness.

The proportionality is not linear. If two moves are
available, one with a score of 10 and the other with
a score of 1, it would be folly to choose the worse

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 ORWANT 791

move one-tenth as often as the better move. So in
the absence of other information, EGGG squares the
distribution when choosing its moves. The move with
the score of 10 will then be chosen 100 times as fre-
quently as the move with the score of 1.

This framework for making interesting moves helps
computer opponents play more interesting chess, but
it can also help them play better poker. We gener-
alized the notion of applying a weighted distribution
to our move choice, and developed it into a generic
bluffing strategy. Bluffing is only possible in games
of hard-to-calculate known odds, as opposed to
games of unknown odds (e.g., sporting contests) and
easy-to-calculate known odds (e.g., blackjack).

Bluffing is tantamount to flattening the weighted dis-
tribution. This lessens the disparities between the rel-
ative attractiveness of different moves, making high-
scoring moves less attractive, and low-scoring moves
more attractive. This makes it less likely that EGGG
will bet the “ideal” amount.

The extent to which EGGG considers nonoptimal bet-
ting amounts is determined by a state variable,
$state{bluff}. The higher the value, the more EGGG’s

bets will vary. The procedure is as follows: EGGG
takes the squared mass function described in the pre-
vious section, and raises each value to the power of
1/$state{bluff}. In betting games with no knowledge
about the players, $state{bluff} begins at two, so the
dampening is exactly equivalent to a square root, and
we end up undoing the squaring that the last section
described. EGGG maintains a separate $state{bluff}
for each player (the actual values are stored as
$state{player}{bluff}) and uses a gradient descent al-
gorithm to adjust that value over the course of the
game, and from game to game, to choose the bluff-
ing strategy most successful against the player.

Garnering trust. In a game of complete information
like chess or tic-tac-toe, cheating is impossible. In
games of partial information, like poker or Scrab-
ble**, cheating is possible, but human players tend
to trust that computer opponents will not cheat. In
games of zero information, like rock-paper-scissors,
the player presses a symbol and is immediately
greeted with “You lost!” or “You won!” or “Draw.”
How can the player verify that the computer did not
cheat?

EGGG computes a “message digest” of a few random
words and numbers concatenated with the message
text.9 The result computed for the rock-paper-scis-
sors screen image shown in Figure 3 is:

Rocky has moved. Proof:
6ec22e8d46e98df39a08e3dd1afe2917

The string of hexadecimal digits is the message di-
gest. The message digest algorithm is one way; given
that string of digits, it is computationally intractable
to uncover the message that was digested. If the
player selects Verify, EGGG will reveal the message,
ensuring that it had already made its selection be-
fore the player selected his or her move.

Graphic layout

EGGG stores the display-dependent aspects of the
game in an object named %display, which contains
attributes such as $display{paused}, $display{iconified},
$display{height}, $display{color_depth}, and
$display{granularity}. This object can be saved to disk
for persistence: most games can be stored and re-
loaded at a later time.

The displayed board can be a variety of shapes, in-
cluding any equilateral polygon. EGGG determines
the vertices of the polygon, and by default the ver-

Figure 5 A hexagonal game board

File

Hex

Preferences Help

ORWANT IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000792

tices are aligned so that an edge is parallel with the
bottom of the screen, as shown in Figure 5. This was
done because many games that have polygonal
boards expect each player to “own” a side.

A grid statement can be used to generate a variety
of patterns on the board. Figure 4 shows the board
created by these three statements:

board is hexagon
squares are hexagons
5 3 5 grid

Note that the “5 3 5” does not refer to x and y axes
as it does in rectangular boards; new axes are cho-
sen parallel to two adjacent sides of the polygon. This
result is sometimes surprising, because a 5 3 5 grid
will not have 25 squares when the board shape is a
hexagon. As you can see from the diagram, there are
actually 13 squares (and six half-squares).

EGGG uses heuristics1 to determine when to “check-
er” game boards (so that alternating squares are dif-
ferent colors) and to thicken particular grid lines to
better delineate regions of the board.

Multiplayer games. EGGG is able to generate three
types of multiplayer games: those with no spatial
meaning, like networked text games; games where
each player has his or her own side of a grid or can-
vas (chess, Chinese checkers); and games where the
orientation is fixed (Scrabble, Monopoly**). If the
game is designed for a particular fixed number of
players, EGGG will usually be able to render it, gen-
erating all the necessary networking code and iden-
tifying how to rotate the board (if there is one) from
client to client.

EGGG can also generate TCP/IP networking code to
create games that can act as both a server and a cli-
ent, as in a networked multiplayer text game. Typ-
ical interactive chat servers take thousands of lines
of code, but most of that code is the same no matter
what the server does. EGGG requires game design-
ers to specify only what makes their server different
from the most basic server; all the rest is generated
automatically.

To illustrate a networked multiplayer text game, we
examine Mammon, a stock-picking game where play-
ers log in to a dedicated server, buy and sell stocks
using play money, and chat with one another. Mam-
mon (in its non-EGGG incarnation) was the first In-
ternet stock-picking game, developed by the author

in July 1994 and at one time supporting over six thou-
sand users.

The first statements of mammon.egg are the follow-
ing:

networked multiplayer text game
port 10900
players are 0..20

Communication between the server and client will
take place over port 10900 (port numbers are re-
corded in EGGG’s central repository) and the server
can accept up to 20 simultaneous connections. These
three statements generate a chat server where play-
ers can send messages to one another. A screen im-
age of Mammon (which depends upon a 63-line
game description) is shown in Figure 6.

Conclusion

By exploiting the similarities among games and game
programs, we were able to create EGGG, a system
that decouples the rules of a game from its imple-
mentation. A designer provides a brief description
of a game, and EGGG renders it into a graphical Perl
program, making it possible for novice programmers
and game designers to create computer games with
a minimum of effort. A designer need specify only

IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000 ORWANT 793

the rules that make his or her game different from
more generic examples of the genre; EGGG’s reus-
able components supply the rest of the game logic.
EGGG has been used to generate over 40 games, in-
cluding chess, poker, rock-paper-scissors, crossword
puzzles, marbles, Mammon, a foreign language
learning game, a news game, Tetris, and new games
like Deducto and variants used as instructional tools
for conveying color relationships.

EGGG makes game design easier by shortening the
game development cycle from months to minutes.
This enables game designers to implement a game
quickly, and then play it to discover any design prob-
lems. Game design thus becomes an iterative pro-
cess of trial and error, an inherently easier way to
create programs than to rely on perfect planning and
meticulous execution.

This is an unusual approach to automated program-
ming. Automated programming efforts always em-
body a compromise between the scope of the auto-
mated programs and the degree of automation. The
Programmer’s Apprentice2 had a broad scope—it
helped programmers create any sort of program. It
was a suite of tools that helped expert programmers
program better. In contrast, some currently available
game generation systems allow users to “program”
with nothing more than a mouse—but the domain
is extremely narrow, restricted to a particular game
subgenre. We can think of the Programmer’s Ap-
prentice as being top-down—full of deep abstrac-
tions, discoveries about the programming experience,
and domain-independent idioms used by expert pro-
grammers. We can think of the more commercial sys-
tems (whether game-related or not) as being bottom-
up, driven by a particular task and full of domain-
dependent behaviors. EGGG, then, is middle-out,
combining the lofty aims of a generic solution with
the realities of a domain-specific real-world software
project and its attending desiderata—efficiency,
speed, portability, and modifiability.

**Trademark or registered trademark of The Tetris Company,
Hasbro, Inc., or J. W. Spear & Sons Ltd.

Cited references and note

1. J. Orwant, EGGG: The Extensible Graphical Game Generator,
Ph.D. thesis, MIT, Cambridge, MA (December 1999).

2. C. Rich and R. C. Waters, The Programmer’s Apprentice, ACM
Press, New York (1990).

3. B. Pell, “METAGAME: A New Challenge for Games and
Learning,” Heuristic Programming in Artificial Intelligence
3—The Third Computer Olympiad, H. J. van den Herik and

L. V. Allis, Editors, Ellis Horwood Ltd., Chichester, West Sus-
sex, UK (1992).

4. B. Pell, Strategy Generation and Evaluation for Meta-Game Play-
ing, Ph.D. thesis, University of Cambridge, Cambridge, UK
(August 1993).

5. J. Orwant, “For Want of a Bit the User Was Lost: Cheap User
Modeling,” IBM Systems Journal 35, Nos. 3&4, 398–416 (1996).

6. L. R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” Proceedings of
the IEEE 77, No. 2, 257–285 (1989).

7. A. E. Elo, The Rating of Chessplayers, Past and Present, Bats-
ford (1978).

8. J. Beasley, The Mathematics of Games, Oxford University Press,
Oxford, UK (1989).

9. The algorithm used is MD5. See http://theory.lcs.mit.edu/
;rivest/Rivest-MD5.txt for more information.

Accepted for publication June 9, 2000.

Jon Orwant O’Reilly & Associates, 90 Sherman Street, Cambridge,
Massachusetts 02140 (electronic mail: orwant@oreilly.com). Dr. Or-
want is Chief Technology Officer of O’Reilly & Associates and
Editor-in-Chief of The Perl Journal. He is the coauthor of Pro-
gramming Perl and Mastering Algorithms with Perl (both published
by O’Reilly) and author of the Perl 5 Interactive Course (published
by Macmillan). Before joining O’Reilly, he was a member of the
Electronic Publishing Group at the MIT Media Lab, where he
received his Ph.D. degree for research involving the prediction
of user behavior, the automation of game programming, and com-
puter-generated personalized news and entertainment. Dr. Or-
want also serves on the advisory boards of VerticalSearch.com,
Focalex, Inc., and YourCompass, Inc. He is a frequent speaker
at conferences, speaking to such diverse gatherings as (most re-
cently) programmers, journalists, and lottery executives.

ORWANT IBM SYSTEMS JOURNAL, VOL 39, NOS 3&4, 2000794

