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Abstract. Path-finding is an important problem for many applications,
including network traffic, robot planning, military simulations, and com-
puter games. Typically, a grid is superimposed over a region, and a graph
search is used to find the optimal (minimal cost) path. The most com-
mon scenario is to use a grid of tiles and to search using A*. This paper
discusses the tradeoffs for different grid representations and grid search
algorithms. Grid representations discussed are 4-way tiles, 8-way tiles,
and hexes. This paper introduces texes as an efficient representation of
hexes. The search algorithms used are A* and iterative deepening A*
(IDA*). Application-dependent properties dictate which grid represen-
tation and search algorithm will yield the best results.

1 Introduction

Commercial games were a $9 billion (US) industry in 1999, and the rapid rate
of growth has not abated [10]. In the past, better computer graphics have been
the major technological sales feature of games. With faster processors, larger
memories, and better graphics cards, this has almost reached a saturation point.
The perceived need for better graphics has been replaced by the demand for a
more realistic gaming experience. All the major computer games companies are
making big commitments to artificial intelligence [3].

Path-finding is an important problem for many applications, including trans-
portation routing, robot planning, military simulations, and computer games.
Path-finding involves analyzing a map to find the “best” cost of traveling from
one point to another. Best can be a multi-valued function and use such criteria
as the shortest path, least-cost path, safest path, etc. For many computer games
this is an expensive calculation, made more difficult by the limited percentage
of cycles that are devoted to AI processing.

Typically, a grid is superimposed over a region, and a graph search is used to
find the best path. Most game programs conduct path-finding on a (rectangular)
tile grid (e.g., The Sims, Ages of Empire, Alpha Centauri, and Baldur’s Gate).
Each tile has a positive weight that is associated with the cost to travel into that
tile. The path-finding algorithm usually used is A* [2]. A few games use IDA*
(Iterative Deepening A*) [4], which avoids A*’s memory overhead usually at the
cost of a slower search. It is worth noting that the commercial computer games
industry “discovered” A* in 1996 [9].
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Path-finding in computer games may be conceptually easy, but for many
game domains it is difficult to do well [1]. Real-time constraints limit the
resources—both time and space—that can be used for path-finding. One solution
is to reduce the granularity of the grid, resulting in a smaller search space. This
gives a coarser representation, which is often discernible to the user (characters
may follow in contorted paths). Another solution is to cheat and have the char-
acters move in unrealistic ways (e.g., teleporting). Of course, a third solution
is to get a faster processor. Regardless, the demands for realism in games will
always result in more detailed domain terrains, resulting in a finer grid and a
larger search space.

Most game programs decompose a terrain into a set of squares or tiles. Tradi-
tionally, one is allowed to move in the four compass directions on a tile. However,
it is possible to also include the four diagonal directions (so eight directions in to-
tal). We call the latter an octile grid and the former a tile grid. Once the optimal
path is found under the chosen grid, smoothing is done on this “grid-optimal”
path to make it look more realistic [8].

This paper presents several new path-finding results. Grid representations
discussed are tiles, octiles and the oft-overlooked hexes (for historical reasons,
usually only seen in war strategy games). This paper introduces texes as an
efficient representation of hexes. The search algorithms used are A* and itera-
tive deepening A* (IDA*). Applicant-dependent properties dictate which grid
representation and search algorithm will yield the best results. This work pro-
vides insights into different representations and their performance trade-offs. The
theoretical and empirical analysis show the potential for major performance im-
provements to grid-based path-finding algorithms.

2 Path-Finding in Practice

Many commercial games exhibit path-finding problems. Here we highlight a few
examples that we are personally familiar with. It is not our intent to make
negative remarks about these products, only to illustrate that there is a serious
problem and that it is widespread.

Consider Blizzard’s successful multi-player game Diablo II. To be very brief,
the player basically runs around and kills hordes of demonic minions... over and
over again. To finish the game, the player usually exterminates a few thousand
minions. The game involves quite a lot of path-finding, since each of these min-
ions either chases the player, or (less commonly) runs away from the player. In
the meantime, the player is rapidly clicking on the screen in an effort to either
chase the minion, or (more commonly) to run away from the minion and com-
pany. All this frantic running and chasing requires path-finding computations.
To complicate the matter, the player is allowed to hire NPCs (non-player charac-
ters, called hirelings) or play with other humans in an effort to kill more minions.
This significantly adds to the complexity of the game in terms of path-finding.

Consider the scenario whereby a party of human players with hirelings is
attacked by a very large horde of minions. From the path-finding point of view,
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this is a complicated situation. Being very sensible, the human players all in-
dependently run in different directions to escape the horde. In this state, path-
finding is done on each fleeing player by interpreting the player’s mouse clicks,
path-finding must be done on each minion so that they give chase to the hu-
man players, and path-finding must be done on each hireling so that they flee
with their respective employers. On a slow computer or in a network game, this
computationally-intensive scenario reduces the game to a slide show, often lead-
ing to a player’s untimely death, since the minions still attack even while the
game appears “frozen” to the human players. One of the solutions applied by
the game programmers was to magically teleport the hireling close to the player
instead of calculating a path to move the hireling to the player. This solution
is not satisfactory; sometimes the hireling is teleported close to the player, but
inside a large group of minions. The most serious problem with teleportation is
that it detracts from the fun and realism of the game.

As a second case, consider The Sims. Here the player controls a family in a
household environment. Often, the house is cluttered with obstacles like furni-
ture, making path-finding slightly tricky. Typical path-finding problems involve
deadlocks when two Sims are trying to occupy the same space at the same time.
A common situation is when a Sim has just finished using the bathroom and is
trying to leave through the bathroom door. Simultaneously, another Sim desper-
ately needs to go and rushes towards the bathroom. The two Sims collide at the
bathroom door and a deadlock ensues. Often the player must personally resolve
the issue. This situation could be avoided with better path-finding (and if the
Sims could learn simple courtesy).

These case studies are representative of the difficulties encountered in many
commercial games. Clearly, these problems must be resolved if we are to realize
John Laird’s vision of creating “human-level AI” in these characters [6].

3 Search Algorithms

A* is the classic artificial intelligence optimization search algorithm. It uses a
best-first search strategy, exploring the most likely candidate while eliminating
provably inferior solutions. Its effectiveness is based on having a good heuristic
estimator, H , on the remaining distance from the current state to a goal state.
If the heuristic is admissible (does not overestimate), then an optimal answer
is guaranteed. On a grid, A* can been shown to explore a search space that is
proportional to D2, where D is the distance to a goal state [7].

Iterative-deepening A* (IDA*) is a memory-efficient version of A*. It elim-
inates the open and closed lists by trading off space for time. For many appli-
cations, space is the limiting factor and thus IDA* is preferred. However, since
IDA* iterates and repeatedly explores paths, this may result in a horribly ineffi-
cient search that is still asymptotically optimal (e.g., DNA sequence alignment).

The speed of an IDA* search depends on the number of nodes it needs to
examine. Analysis has shown that the size of the nodes to be searched is propor-
tional to O(bD−H) [5], where b is the average branching factor and H is the effect
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of the heuristic. Intuitively, this is because IDA* checks every path of length D,
and at each depth, each node branches into b more nodes.

4 Tiles, Octiles, and Hexes

In this section an analysis is presented of the cost of path-finding with IDA*
using tiles (4 degrees of movement), hexes (6), and octiles (8). We assume non-
negatively weighted nodes.

A tile has four adjacent nodes (b = 4). Hence a path-finding search has to
consider the four adjacent tiles to explore. Since one never backtracks along an
optimal path, it is not necessary to consider the direction that the search just
came from (i.e., it is not optimal to undo the previously made move). Hence,
b = 3 (except for the start tile), and the number of nodes that need to be
searched to find a solution at depth D for IDA* is proportional to O(3D−H).

Now consider a hex grid with six degrees of movement. Using a similar argu-
ment, one might deduce that the branching factor of a hex grid is five. However,
we can do better and reduce the branching factor to three. Assume that a hexag-
onal tile’s neighbors are in the compass directions N, NE, SE, S, SW, and NW
(see Figure 1). Consider moving in direction N from tile1 to tile2. What is the
branching factor now at tile2? Moving back to tile1 does not have to be con-
sidered (backtracking). SE and SW also do not need to be considered, since if
they were on the optimal path, one would move from tile1 in directions NE and
NW, respectively, instead of going to tile2. In summary, at each non-root hex,
we need only examine three hexes and hence there is a branching factor of three
(b = 3).

N

SE

NENW

SW

tile1

tile2

Fig. 1. Branching factor of the hexagonal grid

The branching factor of both the tile grid and the hex grid is three. For
comparison purposes, the area of the hex is made to be the same as that of a
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START

GOAL GOAL

A Tile Path A Hex Path

GOAL

START

An Octile Path

START

Fig. 2. Optimal paths on different grids

tile. Given the same distance, on average, a path represented by the hex grid
is shorter than the path represented by the tile grid (see Figure 2, where the
direct path from start to goal is given in bold, and an optimal path following a
grid topology is given in regular font). It follows that because the hex path is
shorter, one doesn’t need to search as deep (i.e., it requires fewer steps to reach
the goal node and hence D is smaller). It can be mathematically shown that
given the same distance, if a tile grid searches with depth D then a hex grid will
search with depth 0.81D on average [11]. Combining the branching factors and
the depths of both grids, it follows that if the tile grid searches through O(3D−H)
tiles in a search, then the hex grid searches through O(30.81D−H) ≈ O(2.42D−H).
This result proves that a hex grid is exponentially faster than a tile grid for an
IDA* search.

Now consider the octile grid, which has eight degrees of movement. Using
similar arguments to that given above, we can deduce that the branching factor
of an octile grid is five. However, a closer inspection shows that this is too high.
With some enhancements, one can reduce an octile search to have an asymptotic
branching factor of roughly 4.2 (5 for diagonal movements and 3 for non-diagonal
movements). One can also mathematically show that if the tile grid is searched
for D depth, then the octile grid is searched for D/

√
2 depth on average (see

Figure 2). Intuitively, the depth for the octile should be less than that of a tile
because one diagonal octile move is equal to two tile moves. Hence an octile grid
searches O(4.2

1√
2
D) ≈ O(2.77D) [11].

In terms of IDA* search speed, hexes are better than octiles, and octiles are
better than tiles. For A*, the asymptotic search speed is indifferent to the choice
of grid (although, of course, D will differ).
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5 Introducing the Tex Grid

In addition to the exponential search advantage that the hex grid enjoys over
the tile grid, hexes have very nice geometric properties. For example, each hex is
perpendicular and equidistant to each adjacent hex. Furthermore, a hex shares
exactly one side with each adjacent hex. These hex properties provide a bet-
ter topological representation of the path-finding problem for computer games.
Consider Figure 3 where a unit wishes to move diagonally. The search needs to
check if the two obstacles that pince the direction of movement are connected
(like a mountain) or not connected (canyon) (top row of the figure). The middle
row shows a possibly ambiguous tile representation of the two scenarios. Al-
though this ambiguity can be resolved with some extra work, it can be entirely
avoided by using hexes or texes (bottom row). For these reasons, it is common
to see hexes used in war strategy games. Unfortunately, because of the regular
hexagon’s shape, the hex grid is harder to implement.

The tex grid (a tiled hex) is introduced which is topologically equivalent
with a hex structure but uses tiles. One can imagine a tex grid as a tile grid such
that the odd columns are moved up by half the height of a tile (see Figure 3 or
Figure 7). A bricked wall is another example of a tex grid. Tex grids are more
manageable and representative than hex grids since space is represented as rect-
angles. Additionally, each tex is equidistant and shares exactly one side to each
adjacent tex. More importantly, texes have a branching factor of three. Theoret-
ically, texes are only slightly slower than the hex grid on average: O(30.809D−H)
instead of O(30.805D−H). Another obvious advantage that texes have over hexes
is that every tex path is shorter than a tile path, whereas some hex paths are
longer than some tile paths (but on average is shorter). All in all, tex grids are
exponentially faster than tiles (and slightly slower than the hex grid), produce
smoother and shorter paths, and are easy to work with. The attributes for the
choice of grid are summarized in Table 1.

Table 1. Summary of Grids

Grid Adjacent Branching Average A* IDA*
Type Nodes Factor Depth Complexity Complexity
Hex 6 3 0.81D O(D2) O(2.42D−H)
Tex 6 3 0.81D O(D2) O(2.43D−H)

Octile 8 4.2 0.71D O(D2) O(2.77D−H)
Tile 4 3 1.00D O(D2) O(3.00D−H)
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Fig. 3. Two scenarios for diagonal moves

6 Introducing the Vancouver Distance

In pathfinding search algorithms like A* or IDA*, we use a heuristic that es-
timates the cost of reaching the goal. This heuristic is generally the shortest
distance between the current node and the goal node in the absence of obsta-
cles. For the tile grid, this shortest distance heuristic is called the Manhattan
distance. For the hex grid, we introduce the Vancouver distance. The Vancouver
distance also works for the tex grid since it is topologically equivalent to the hex
grid.

Given two nodes (x1,y1) and (x2,y2) under a hexagonal co-ordinate system,
let

x = ‖x1 − x2‖
y = ‖y1 − y2‖

correction =




x1(mod2) , if y1 < y2 and x is odd
x2(mod2) , if y1 > y2 and x is odd

0 , otherwise

then the Vancouver Distance, or the number of hexes between the two points,
is

max{0, y − �(x/2)�} + x − correction
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The above result follows from three observations. Firstly, the hexes (x, y) on
or under the 30◦ diagonal are exactly x hexes away from the origin. Secondly,
the hexes above this diagonal are exactly y−�(x/2)� away from the diagonal (see
Figure 4). Thirdly, for two points such that one point is in an odd column and the
other point in an even column, the heights of these two points will be different
in the Cartesian plane even if they are the same on the hexagonal grid; as such,
it is necessary we add a correction term to compensate. Using these facts, we
can arbitarily set one node to be the origin and use symmetry to calculate the
Vancouver distance between two nodes.

(0,3)

(0,2)

(0,1)

(0,0)

(1,0)

(1,1)
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5

(5,2)

(x,y)

distance to origin

Fig. 4. Vancouver Distance under this hex co-ordinate system. Note that we
arbitarily arranged the hex grid so that the odd columns are above the even
columns

7 Empirical Results

This paper has shown the asymptotic theoretical results, but it is unclear how the
various grid topologies behave for the grid sizes normally used in practice. This
section contrasts the costs of IDA* searches on tile grids, against comparable
tex grids (tiles/octiles and texes are the same size).

There are two reasons why we are empirically comparing tiles and texes,
and not use octiles or hexes for comparison. Firstly, comparing hexes and any
rectangular grid will not be fair because they are of different shape and size even
if their area is the same (see Figure 5); this becomes a problem if we were to
compare a MxN hex grid or a MxN tiled grid, as the hex grid would be taller
and thinner than the tiled grid by an irrational proportion. As such, we are left
with comparing the tex grid versus the tile or octile grid. Although all these
grids are rectangular, they all have different topologies (due to their different
branching factors). A convenient surjective mapping exists from the tile grid to
the tex grid: for every pair of adjacent tile nodes, there exists a corresponding
pair of adjacent tex nodes. The corresponding injective mapping does not exist,
because not every pair of adjacent hex nodes has a corresponding pair of adjacent
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tile nodes. However, we can find a corresponding pair of physically adjacent tile
nodes (see Figure 6).

Fig. 5. A tile/octile and an overlapping hex. Both have the same area but have
different dimensions

All test cases where the tex grid has an unfair advantage over the tile grid
were removed. For example in Figure 7, the tex grid can’t be compared to the
tile grid since the tile grid cannot reach A while the tex grid can. It is practically
impossible to fairly compare these two topologically different grids; nevertheless,
the results are presented below.

Table 2. Empirical Results

Size Trials Obstacles TexPath
TilePath

TexNodes
TileNodes

TexTime
TileT ime

102 106 0% 0.809 0.769 1.172
102 106 10% 0.809 0.067 0.157
102 106 20% 0.810 0.049 0.090
102 106 30% 0.826 0.021 0.048
202 106 0% 0.808 0.492 0.974
202 6000 10% 0.808 0.012 0.020
202 1000 20% 0.813 0.019 0.034
302 106 0% 0.811 0.152 0.285

The tile grid and its comparable tex grid are compared in numerous indepen-
dent trials (see Table 2). In each trial, a fixed number of obstacles are randomly
placed on the grid; after that the start and the goal are randomly placed. Ad-
ditionally, a path exists between the start and the goal in every trial. A glance
at the TexPath

TilePath column show that it reaffirms the theoretical prediction of 0.81.
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Fig. 6. Nodes b,d,f ,h are adjacent to node e in both the tile and tex grid. Nodes a
and c are adjacent to e in the tex grid but not in the tile grid, but are physically
adjacent. If we were to compare the octile grid and the tex grid using the same
example, we would find that g and i are adjacent to e in the octile grid but
neither adjacent nor physically adjacent in the tex grid
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Fig. 7. A tile grid and the corresponding tex grid
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Note that the fraction of the tex path length over the tile path length ( TexPath
TilePath )

grows as the number of obstacles increases, this is not surprising given that the
presence of obstacles restrict the advantages of texes or tiles (obstacles reduce
the directions of movement).

The TexNodes
TileNodes and TexTime

TileT ime clearly show that searches on tex grids examine
less nodes and are faster. Note that the tex grid searches slower (but checks less
nodes) than the tile grid when there are no obstacles, this is because the tex
grid search checks, at the node level, that every move does not give an unfair
advantage over the comparable tile grid search; clearly, the hex grid search would
be much faster if the need for fair comparisons is removed.

The general trend in Table 2 is that Texes perform better than tiles when the
grid size becomes larger or when the number of obstacles increases. This trend is
most apparent in the 10x10 grids, whose numbers are more informative because
the number of trials is large. In comparison, we only have a limited number of
trials for the 20x20 grids since it takes exponential amount of time to gather
those trials.

8 Conclusion

Path-finding is an important issue in many application domains, including com-
puter games. It is worth noting that the results of this paper applies not only to
computer games, but to any type of pathfinding on a grid. This paper introduces
results that increase our understanding of the algorithms and data representa-
tions used:

1. Hexagonal grids provide a better topological representation of the underlying
problem space. Each hex is equidistant and uniquely shares one side with
each adjacent hex.

2. The tex grid retains the advantages of a hexagonal grid but is easier to
implement.

3. While the choice of grid does not affect the asymptotic performance of A*,
it does for IDA*.

4. It is mathematically proven and empirically shown that the hexagonal grid is
superior to the conventional tile grid for IDA* searches. Furthermore, search-
ing on a hex grid instead of a tile or octile grid will result in exponentially
faster searches. It can also be proven that a hex grid is optimal in terms of
search speed for all regular planar tessellations.

Hex grids provide a better topological representation than tile or octile grids.
Moreover, for memory constrained domains that necessitate IDA*, the hex grid
is the optimal grid choice. Finally, the implementation of hex grids is made easier
with tex grids.

Current research involves analyzing the performance of different grid topolo-
gies and search algorithms in BioWare’s Baldur’s Gate series of programs.
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